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LONG-RANGE  ELECTROSTATIC  AND  ELECTROMAGNETIC 
INTERACTIONS BETWEEN ATOMS 

SUMMARY 

The  object of this calculation is to  examine the contribution  to  the 
interaction  energy  between two neutral  hydrogenic  atoms  in  their  ground 

.state because of their  electrostatic  interaction  and the presence of an electro- 
magnetic  radiation  field  in its "vacuum" state. The  separation  distance R 
between  the  atoms is large compared  to  atomic  dimensions,  and is of the 
order  of the transition  wavelength A associated with the Is-2p  atomic 
transitions.  Thus,  the  atoms are sufficiently  separated so that  the  over- 
lapping of their  respective  charge  distributions is neglected  along  with  "spin. '' 
The  problem is then  handled  using  nonrelativistic  quantum  electrodynamics. 

The  Hamiltonian of the system  consists of the  following parts: H , (0) 

which corresponds  to  the  sum of the  Hamiltonians of the  respective  isolated 

atoms  plus  the  "vacuum"  photon state of the  radiation  field;  H"), which 
corresponds  to  the A ( p )  P ( p )  type  interactions  between  the  atoms  and  the 

radiation  field  through  the  electromagnetic  potential A ( p )  ; H ( 2 ) ,  which 
corresponds  to  the A ( p )  . A ( p )  type interactions  between  the  atoms  and  the 
radiation  field;  and  H  the  electrostatic  interaction  between  the  atoms. 

Stationary  state  perturbation  theory is then  used  to  obtain  the  interaction 
energy of the system  to  fourth  order  in  the  electron  charge  e. By retaining 
higher  order  multipoles  (up  to  octupole  orders)  in  the  expansion of H and 

i K .  r expanding  the  retardation  factor ( e ) in A ( p )  in a power series, the 
interaction  energy is obtained,  accurate  to  quadrupole-quadrupole  orders. 

" " 

" 

" " 

(2' 

4 -  

- 4  
q 

The  resul ts   are  given as corrections  to  the  various  electrostatic 
multipoles  corresponding  to  the  dipole-dipole,  dipole-quadrupole  and 
quadrupole-quadrupole  interactions  between  the  atoms.  The  inclusion of 
the  radiation  field  in  the  Hamiltonian of the  system is found to  give rise to 
retardation effects in  the  interaction  energy which are a function of the 
separation  distance R. The  dipole-dipole results  are  in  agreement with the 
calculations of Casimir and  Polder [I] and others.  The  dipole-quadrupole 
approximations  can  be  written as a sum of three  quantities  proportional  to 
R-7, R-8, and R-9. The R-8 term  corresponds  to  the  purely  electrostatic 
interaction  and the others result f rom the inclusion of the  radiation  field  in 



the  system. In the limit of large R (R>>h), the  dipole-quadrupole  electro- 
static  interaction  energy  (proportional to R-*) is found to be reenforced by 
a factor  proportional  to R-9 and  diminished by a factor  proportional  to R-7. 
The results go over  into  the  electrostatic case for   small  R (R<<h) ,  showing 
that  the  retardation effects are unimportant  for  small  separations as in the 
dipole-dipole case. The  corrections  to  the  quadrupole-quadrupole  electro- 
static  interaction  (proportional  to R-") are much  more  complex.  The 
resulting  expressions  consist of terms  proportional  to R-7, . . . . 
The  above  results are expressed  in  terms of integral  functions  over 
b f KR,  where K is the  magnitude of the wave vector  associated with 
the  radiation  field. 

R-11 

INTRODUCTION 

The  object of this  calculation is to examine  the  contribution  to  the 
interaction  energy between  two neutral  hydrogenic  atoms  in  their  ground 
state because of their  electrostatic  interaction  and  the  presence of an 
electromagnetic  radiation  field  in  the  system.  The  inclusion of the  radiation 
field  in  the  Hamiltonian of the system  gives rise to  retardation  effects  in  the 
interaction  energy [ I ]  which are a function of the  separation R between  the 
atoms.  These  effects  are  unimportant  for  distances  smaller  than  the wave- 
length A ,  associated with the  radiation  being  considered,  and  increase  in 
importance as R  approaches A. In  the case of atomic  systems,  the  smallest 
wavelength  associated with atomic  transitions is large when compared  to  the 
atomic  dimensions (A >> ao, where a,, is the  Bohr  radius);  hence,  the 
problem  can be treated  using  nonrelativistic  quantum  electrodynamics.  This 
allows us to  neglect  the  particle  lfspinl'  and  to  use  simple  product  eigen- 
functions  for  the  atomic  and photon states. In addition,  the  above  simplifica- 
tions  make it possible  to  treat  the  problem  using  standard  nondegenerate 
perturbation  theory.  This  feature is crucial  since the  calculation  must be 
pushed  to  fourth  order  before  obtaining  non-zero  corrections  to  the  interaction 
energy  due  to  the  radiation  field. 

This  problem was first  treated  to first order  in  both  the  electrostatic 
interaction  potential and  the  radiation  field  (dipole-dipole  approximation) by 
Casimir and Polder [I]. These  authors  used  an  elegant by asymmetrical 
method  consisting of first treating  the  interaction  between  one  atom  with 
the  radiation  field  and  then  considering  this  distorted  field  and  the  second 
atom as the  initial  configuration  for  subsequent  approximations.  Leech [ 2 ]  

2 



attempted  to  solve  the  problem  (to first order)  in a more  systematic  manner 
using  nondegenerate  perturbation  theory. H i s  resul ts  were in  disagreement 
with Casimir  and  Polder,  and, later were reported  to  be  in  error by Auk, 
Power and  Zienau [ 31. Subsequent  calculations by Power and  Zienau [4] 
using a different  method  verified  Casimir and Polder's results. They  applied 
straightforward  perturbation  theory  to a reduced  interaction  Hamiltonian 
consisting of only the  transverse  component of the  electric  field  vector.  In 
this  reduced  Hamiltonian  the  electrostatic  interaction is not  given  explicitly; 
hence if the  interaction  between  the  electrostatic  interaction  potential  and  the 
electromagnetic  potential is desired,  this method  cannot  be  used.  Subsequent 
calculations [ 51 using  field  theoretic  techniques  have  since  established  the 
correctness of Casimir  and  Polder's results. 

In this  calculation  the  Casimir  and  Polder  results  are  verified,  using 
a systematic  application of nondegenerate  perturbation  theory  and a conven- 
tional  expression  for  the  interaction  Hamiltonian,  The  calculations are 
extended beyond the  dipole  approximations of Casimir and  Polder, by including 
te rms  up to  octupole order  in  the  electrostatic  potential,  in  order to obtain 
interaction  energies  accurate [ 6 ]  to  quadrupole-quadrupole  orders,  and by 
retaining  the  first  five  terms  in a power series  expansion of the  retardation 
factor of the  electromagnetic  potential. In this way, corrections due to  the 
radiation  field are obtained  for  each of the  dipole-dipole,  dipole-quadrupole, 
and  quadrupole-quadrupole  electrostatic  interaction  energies. In addition, a 
systematic  analysis is performed  to  determine how the  electrostatic  inter- 
action  potential is coupled with the  electromagnetic  potential  to  produce  the 
retardation  effects  to the electrostatic  interaction  energy of the system. 

FORMULATI ON OF THE HAM I LTON IAN 

Consider a system of two one-electron  neutral  atoms  separated by a 
large  distance R,  (R >> ao, where a. is the  Bohr  radius),  interacting 
through  their  electrostatic  potential H in  the  presence of a radiation  field 

described by an  electromagnetic  potential A ( p  ) . In addition,  assume  the 
respective  nuclei  to  be a t   r e s t  (Born-Oppenheimer  Approximation)  and 
neglect all Irspinrl  interactions  between  particles.  The  Hamiltonian  for  this 
system is then  given by 

q 4 4  

H = H + H  + H  + H  I I I q r  

3 



where H and H are the  Hamiltonians  for  atoms I and II, given by I 11 

H is the electrostatic  potential [ 6 ]  between  the two charge  distributions 

defined  in a coordinate  system  such  that E is along  the Z axis (Fig. 1) 
and  given by 

q 

H is the electromagnetic  field  Hamiltonian  given by r 

The  creation  and  destruction  operators Q ( K )  and 6' (3 are defined 

through  the  quantized  vector  potential' A ( p )  given by 

+ -  
h h 
" 

1. See  Heitler's  Quantum  Theory of Radiation for the  definition of the  various 
" 

quantities  in A ( p )  . 
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Figure 1. System coordinates. 



Expanding  equation  (2) , one  obtains 

where  the first term  in   braces  is just  the  unperturbed  Hamiltonian  for a 
single  atom. If one  defines  the terms  in  equations (3)  and (6) as follows: 

then  the  total  Hamiltonian  given by equation ( I )  may  be  written as 

Further  simplification is accomplished by considering  the  fact  that  the 
radiation  field  Hamiltonian, as given by equation (4) , has as eigenvalues 
the  number of photons present in any  given  state.  Thus, i f  one picks  the 
vacuum state defined by I , 0, 0 ,  . . .> as the  ground  state of the  radiation 
field,   there  are no photons  interacting  with  the  atoms  in  the  ground  state, and 

H may  be  written as H'O) and  combined  with H'O) in  equation (7) .  r r I 
Incorporating  this  modification  in  the  above  expression,  the  total  Hamiltonian 
may  be  defined as 

6 



If one further  redefines  the  preceding  quantities as follows, 

one  may  use  perturbation  theory  techniques  to  solve  the  problem by considering 
the  total  Hamiltonian as a series  expansion  in  powers of the  electron  charge e 
given by 

- 

EIGENFUNCTIONS  AND  EIGENVALUES 

System  Eigenfunctions 

A systematic  study of the  interaction  between two atoms  requires  the 
knowledge of their  respective states given  in  terms of eigenfunctions of the 
system. When perturbation  theory is used  to t reat  a given  problem,  the 
unperturbed  state  eigenfunctions  must  be  determined  completely2. 

In this  problem, it wi l l  be  assumed  that  the  atoms of the  system are 
sufficiently  separated s o  that  the  overlapping of their  respective  charge  distri- 
butions  can be neglected. In this  case,  the  unperturbed nth state of the system 
can be expressed as products of eigenfunctions  given by 

2. This state is sometimes  referred to as the  ground state of the  system. 

7 



If one  examines  the  system  such  that  the  unperturbed state corresponds  to the 
ground state, then  equation  (16) is replaced by 

where *(') (I) represents  the  unperturbed  .eigenfunction  for  atom I in  i ts  

lowest state, and $(O) (r) represents  the state of the  radiation  field  in  its 
1 

(0) 
ground state (sometimes  referred  to as the  ffvacuumff state). Since  hydrogenic 
eigenfunctions are used  for  the  atomic  states,  and  the  electromagnetic  potential 

is expressed  in   terms of creation  and  destruction  operators ah ( K )  , Q h ( ~ )  , +c, d 

alternate  definitions  for  the  eigenfunctions  given  in  equation (16) are necessary. 

If one wishes  to  express  an  intermediate state in which atoms I and 11 are not 
necessarily  in  the  same  state, and  the  photon state contains  more  than  one 
photon having  different  parameters K ,  h then one denotes this state by 

i 

Y 

where  atom I is found in  the state having  quantum  numbers n; atom 11 has 
quantum  number m; the photon state  contains N photons  having  parameters 
~ , h ;  and N' photons with parameters  K ' , A I .  

The  hydrogenic  eigenfunctions a r e  defined by [71 

where  the R E) and ym(e , @ )  are also defined  in  Reference 7. 
n, 1 1 
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The  specific  eigenfunctions 21 used  in  this  calculation are those 

corresponding  to  the  ground state for which  n = I ,  I = 0, m = 0; 
n , l  Y m 

and for the 2p states for which  n = 2, I = I, m = 0, f I: 

The  above  functions,  together with the  photon states,  redefined as 

and  whose  vacuum  state is given by 

Y 

completely  define the system under  consideration. 

9 



System Eigenvalues 

Having  defined the eigenfunctions  and  their  various forms, one  proceeds 
to describe  the  eigenvalues  corresponding  to  the  above  eigenfunctions. First, 
the  hydrogenic  eigenfunctions are solutions for the unperturbed state of the 
system.  The photon states are eigenstates of the  radiation  field  Hamiltonian 
H  given by equation (4) ; that   is ,  r 

In addition,  these  photon  states  satisfy  the  usual  relations  given below: 

a' I , . . . N, . . > = am) 1 , . . . (N+1) , . . (29) 

@ 1, . . . N ,  . .> = 1 ,  . . . (N- I )  , . .>  Y ( 3 0 )  

$a 1 ,  . . .  N, . .  > = 

Q @ +  /, . . . N ,  . .> = m) m) 1 , . . . N, . .> . (32) 

I, . . .  N ,  . . >  7 

(31)  

It is clear  from  equation (28) that  the  vacuum  state is an  eigenstate of H 

with eigenvalue N = 0; hence, one is justified  in  including H with the 
unperturbed  portion of the  Hamiltonian. 

r 

r 

Other  relations between  the  photon eigenstates  and  the  field  operators 
which wi l l  be used  later on a r e  given below for  future  reference [ 81 : 

10 



The  energy  eigenvalue  for  the  system  may now be expressed  in  terms of the 
unperturbed  eigenfunctions  using  nondegenerate  perturbation  theory  reported i n  
an  earlier NASA publication [ 91. Thus,  the  solution  to  the  perturbed  eigen- 
value  problem, 

may  be  obtained by expressing H as a series  expansion of the form 

whose  eigenvalue may  be  expressed as 

= E(') + e EA1' + e2EA2) + e3E(3)  + e 4 E (4) + .. . , 
En n n n (39) 

I1 



where the energy  corrections  to  ground state energy E (O) are given in   terms 

of matrix  elements of the  perturbation  Hamiltonians H (i) , i # 0. Since  one 
desires  to obtain  results to the fourth  order,  one  needs all the terms  indicated 
in  equation (39) . But  since H as given by equation (38) contains  only 

H") and H(2)  , one can  obtain  the terms  corresponding  to  equation  (39) 

directly from Reference 9, by letting H(3) and H(4) equal  to  zero.  Doing 
this,  the  resulting  expressions  are: 

n 

12 



+ c  
n'#n 

The  interaction  energy  E  given  in  equation (39) may be  evaluated  to  the 

desired  fourth  order  using the above  results. 
n' 

CALCULATION OF GENERAL MATR IX ELEMENTS 

Introduction 

Analysis of the  terms  in  equations  (40)  through (43) shows  that  the 

corrections  to  the  interaction  energy  E ( O )  consist of various  matrix  elements 
of the  form 

n 
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These terms need  to  be  evaluated  and  then  combined  in  order  to  obtain  the 
interaction  energy  between the two  atoms.  The  above  operations are simplifed 
considerably if  one  neglects  those  terms  which  correspond  to  interactions 
between  the  radiation  field  and  either  one of the  atoms [IO]. Thus  in  sub- 
sequent  discussions E will  refer   to  only  the  interaction  energy  between 

atoms I and 11, either  through  electrostatic  interactions  or  through  the 
radiation  field. In the  course of evaluating  the  various  corrections  to  the 
interaction  energy,  an  analysis is made  on all the  terms which make up the 
overall  interaction  energy  to  fourth  order. 

n 

First-Order Corrections 

One proceeds  to  evaluate  the  various  matrix  elements  corresponding 

to the E:i) energy  corrections.  The  first-order  correction  E is given (i) 
n 

bY 

Using  the  unperturbed  eigenfunctions  given by equation (16) , the  definition 

f o r  H(') given by equation (13) , and since H(') affect only  atoms I and 11, 
equation  (44)  simplifies  to 1,II . 

Before  evaluating  equation  (45),  one  simplifies  the  expression  for H(') as 

given  in  equation (8) be recalling  that  in  obtaining A ( p )  , the  condition 
V A ( p )  = 0 was used.  (See  References 10 and 11 for  details. ) Since 

I 
" 

" 

= - i& V - A ,  one  notes  that  and  commute  and H,!') may now 
e 

be expressed as - 
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, 
The  specific  position  dependence  in  the  above  expression  for H 

included  because  the  operators  and x refer to two different  coordinate 
systems.  Their  relationship is best  described by Figure 2 which also  gives 
the  following  relations: 

(1) is 
I 

where x and RH are related by (Fig. I) 
“L 

I 

R = R   - R  
1 1 1  

Analysis of te rms  in  equation (46) shows  that H ( ”  consists of products 
proportional  to I 

Since  the  momentum  operators  act only on the atomic states, and  the  field 

operators @A(z, @ ( K )  affect  only photon states, one obtains + -  
h 
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- E +  2 

Figure 2. Electromagnetic  potential  coordinates. 



Using  this  result, the first term  in  equation (45) is proportional  to 

Te rms  of this type  vanish,  since one must  satisfy  the  relations [ 8 ]  

and 

< , N', . . . I a+ I N,  . .> = hNI, (N+l) 

between  initial  and  final photon states.  Hence,  the  terms  in  equation (45) 

vanish  and  the  first  order  correction E n ( I )  does  not  contribute;  that is, 

Second-Order  Corrections 

The  second-order  correction  to  the  interaction  energy is given by 

Since E (2) contains both H (I)  and H ( 2 ) ,  one first evaluates H 

t e rms  of A ( p )  . From equation (14) , one  notes  that H ( 2 )  consists of H 
I '  

H r )  and  H (2) .  Since H (2) is given  in  terms of A ( p )  , one uses  equation 

(5) to get 

( 2 )  in 
a" (2) 

4 4  

q I 
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H i 2 )  = (&) ( VOl. ) (&) 2 lTK c2 Y 2  

Kh K'h' 

Using  the  above  definition for H ( 2 )  , and  the  definition for  H (2)  given  in 

equation (14), the first term  in  equation (51) becomes 
I 

Evaluation of the  above  terms is simplified by noting  that  the first two te rms  
give  the same  result  s o  that only two t e rms  need  to be evaluated.  Rewriting 
the first term,  one obtains 

Since  the  operator A A consists of products of the  form Q+Q , Q+ Q', 

a@+, Q @  , the  above  expression  may be solved by applying  the  relations 
listed  in  equations (29) through ( 3 6 ) .  These  relations  indicate  that only  the 

term  containing a@ gives  results which are nonzero;  that is, 

- 4  

+ 
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Using  this  expression  in  the  matrix  element,  expression (54) yields 

Separating  the  sums  over K , A  and K ' ,  h', and  summing  over h,hl  and K ' ,  

gives 

The  above  term is significant  because it shows  explicitly how the R 

dependence  contained  within  the  exponential  e i ( K  - K" ''I vanishes when 
calculations are carr ied out  to  the  second  order,  making  the  quantity in 
expression  (56)  independent of the  interatomic  separation.  Terms  having 
this  property  do  not  contribute  to  the  interaction  energy  between  atoms I and 
I1 and  only  give rise  to  self-interaction  energies which are neglected in this 
calculation.  Hence,  the first two te rms  of equation  (53)  do  not  contribute. 
The last te rm of equation  (53) is given by 

" 4  

(57) 

This  term  corresponds to  the  electrostatic  interaction  between  the two atoms 
and, as  such,  contributes  to  the  interaction  energy.  Since all other  terms 
vanish,  equation  (53) is given by 

Expressing H(') in t e rms  of H I (I) and H I1 , (I) the  numerator of the  second 

term  in  equation  (53)  becomes 
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where a denotes a 1  the  quantum  numbers  for  the  intermediate states. 
Expanding  the first  term  in  equation (59) yields 

Referring  to  the  expression  for H(" , one  notes  that it consists of two t e rms  

involving Q (J and Q A  ( K )  , which, when operating on the photon eigenstates, 

as previously  stated,  require  that  the  initial  and  intermediate photon states 

differ by one photon.  Since <.:I> is independent of the  coordi- 

nates of atom 11, a photon must  be  exchanged  between  the  field  and  atom I to 
obtain  nonzero  results.  This is illustrated  below,  using  the  following  inter- 

I + -  
A 

action  diagrams [ 101 . 

r; 
According  to  diagram  (a),  atoms I and 11 are initially  in  the  same 

state (single  lines), and  the photon state  corresponds  to  the  vacuum state. 

The  interaction  operator H(') llcarries'J  the  system  into  an  intermediate 

state I at>, where  atom I is found in a different  virtual  (double  line)  state, 
atom II remains  in its initial  state, and  the  photon state contains  one  virtual 

photon [IO]. The  next  interaction  operator H(') "brings"  the  system  back 

to its original state. Diagram  (b)  illustrates  the case in which the initial 
photon state is not the vacuum. If the initial  system is such that both atoms 
are in  the  same state and  the photon state  corresponds to the  vacuum,  then 
only diagram (a) applies. Similar  analysis on the  fourth  term of equation (59) 
yields  identical  results. 

I 

I 
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4 
The  second  and  third  terms of equation  (59)  give similar results,  as 

may be seen by considering  the  second  term  in its expanded  form;  that  is, 

The on 

4 

To have  nonvanishing  results  in  equation (61), the  photon states must 
differ by one  photon.  Hence, there must be a photon  exchanged  between  atoms 

I and II because both H I ( I )  and  H(')  appear  in the above  matrix  product.' II 
ly  possible  nonzero  interactions are illustrated below. 

Diagrams (a) and  (b)  correspond  to e:'> Gf?; (c) and  (d) 

correspond  to (.:> <.:I>. Analysis of these  diagrams  shows  that the 

conditions of equation  (61)  cannot be met  since  the  atomic  states  change  in  the 
transition  from  initial  to  intermediate  state  during photon  exchange.  Hence, 
the  second  and  third  terms of equation  (59)  do  not  contribute  either.  Therefore, 

the  second  term of E (2) is identically  zero.  Since the second  term of E 

vanishes,  only the t e rm given by equation  (58)  contributes  to  the  second-order 
correction;  that  is, 

(2) 
a a 

Later,  it wil l  be  shown  that  this  term  vanishes when the  unperturbed  states 
are s-states. 
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Third-Order  Corrections 

The  third-order  correction E:) is given by equation (42). Since 

€I(') has been  shown to vanish, E (3)  is given by 
nn a! 

Considering  the  factors  in  the first term,  one notes  that only  one of them  needs 
to  be  examined  in  detail,  since  the  other  factor is similar  in  form.  Using 

equations (13) and (14) and expanding H ( I )  H (2) one  obtains aa!' a!ta , 

photons  differs by unity, land H(" couples  photon  states whose  number of 
I 

photons  differs by zero or  two. Therefore,  the  only way to  satisfy both 

requirements is to  allow  the  initial state I z) ::: (r> to  contain  one  photon. 

This is not  allowed  since I z)::; (r$ must  be  the  vacuum state; consequently, 

the  above term  cannot  contribute  to  the  interaction energy. 

22 



Referring  to  equation (64), one  notes  that  the  preceding  discussion 
also applies  to  the  fifth  term by simply  interchanging  atoms.  Similar argu- 
ments are used to show  that  the  second  and  fourth terms of equation (64) do 
not  contribute  either.  Finally,  the  third  and sixth t e rms  of equation (64) , 
which contain  matrix  products of the  operators H and HI, 11, (I) do  not (2) 

f 4  1 q 
contribute  because, as .noted  before, H'I' couple states whose number of 

photons  differ by  Unity, and H (2) can  only  couple  identical photon states. 

Applying  the same  arguments  to H (2) H (I) one finds  that  the first term  in 

equation (63) does  not  contribute  to E(3' .  Possible  nonzero  configurations 

corresponding  to  equation (64) are illustrated  in Figure 3. These  diagrams 
are introduced  here only to  illustrate  the  method  used  to  analyze  more  complex 

1, II 
q 

CYCY' a'a' 

CY 

situations later on. 

I II I II I II 

I I I  I II I II 

Figure 3. Possible  nonzero  interaction  diagrams of equation (64 ) .  

The last te rm of equation (63) consists of matrix  products  involving 

H(' )  only.  Using  equation (13) to expand this  term, one obtains 
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In the  above  equation, three  types of products  involving H, and H,, (I) a r e  (1) 

found, 

and H 

( 1 )  
I I 

1 

products  involving  only H or H Z )  and  products  coupling H (1) 

II (I) in  various  ways. If one requires  that  initial and  final  states be 

identical,  one  notes  that all the above terms  violate this requirement  in one 
way or another.  This  can  best be seen by analyzing  the  diagrams  in  Figure 
which depict  typical  nonzero  configurations of the t e rms  in  equation (65). 

4, 

Figure 4. Some  interaction  diagrams of equation (65) .  
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7 
Since  the last t e rm is zero  and  the  previous  terms of equation (63) 

do not contribute  either,  one  finds  that  the  third-order  correction  to  the 
interaction  energy  vanishes;  that  is, 

E (3) 
n = o  

Fourth-Order  Corrections 

The  fourth-order  correction  to  the  interaction  energy is given by 

equation (43). Using  the fact that H r i  as well as the  products of the form 

given by equation (59) vanish,  the  expression  in  equation (43) becomes 

Expanding ihe f i r s t   t e rm of the  above  equation  yields 

The  three  types of terms  corresponding  to  various  interactions  in  the 
above  equation are analyzed as follows: 

25 



a. Interactions  between  field  and  either of the  atoms:  The first and 
fifth terms in  equation (68) correspond  to  this  type  interaction.  These  terms 
do  not  contribute  to  the  interaction  energy as may  be  seen by analysis of 
diagrams (a) and  (d) of Figure 5. 

b. Interactions  between  field  and  both  atoms:  The  second  and  fourth 
t e rms  of equation (68) correspond  to  virtual photon  exchange  between  atoms I 
and II and, as such,  contribute  to  the  interaction  energy.  [See  diagrams  (b) 

and (c) of Figure 5.1 The  terms  in  equation (68) involving both H (2) and 

H ( 2 )  are  also  in  this  category;  except  that  the  interaction between atoms 

takes  place  through  the  operator HA2) , and  the  field  interacts with either 

q 

I, 

Y 
of the  atoms  via H (2) Hence,  these  terms  contribute only when matrix I, I1 

elements  over H (’) a r e  nonzero.  This  group of te rms  is illustrated  in 

Figure 6.  Note that  in  this  case H‘Z) gives  rise  to  instantaneous  emission 

and  absorption or  absorption and emission of two virtual  photons.  This  requires 
that  the  initial  and  intermediate  atomic  states  be  the  same.  Therefore  these 

terms  contribute only when the  matrix  elements of H(2 )  over  initial  states 

cl 

I, I1 

are nonzero. 

H 

I 

Figure 5. Interaction  diagrams  corresponding  to  first,  second, 
fourth, and  fifth  terms of equation  (68). 

c.  Interactions between atoms I and II only: The  only te rm of this  type 

is given by the  last  term  in  equation  (68).  Since H (2’ does  not  affect  the 

photon states,  the  initial,  intermediate,  and  final photon states  must be the 
q 
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I II I II I il I II 

Figure 6.  Interaction  diagrams  corresponding  to  the  third,  sixth, 
seventh,  and  eighth  terms of equation (68). 

same.  The  diagram  corresponding  to  this  term is given  in  Figure 7. Note 
that, when electromagnetic  interactions are neglected,  and  the  interaction 
energy is computed to  fourth  order  in  the  electron  charge  e, only this   term 
and  that  given by equation  (58) are obtained.  This is the  reason  for  singling 
out this  term i n  Figure 7. 

""" 

I 

The  second  term of equation  (67) 

is given by products of the  form 
H ( 2 )  .(I) (1)  (1) .(2) (1) 

QQ' QIQY" Hal'& 3 HQQl QIQ" 9 

vious  definitions for H and H , 
the  expansion of the  above  products is 

(1) (2) 

Figure 7. Interaction  dia.gram  quite  lengthy.  These  expansions a r e  
corresponding  to  the  atom-atom needed  to select the  nonzero  terms 
coulomb  interaction  term  given which  contribute to the  interaction 

by the last element of energy. If the  indicated  expansions 
equation  (68). 

and the  results  are  expressed in te rms  of interaction  diagrams,  the  task is 
simplified  considerably.  For the other two terms,  only the  resulting  expan- 
sions  and  their  corresponding  interaction  diagrams  will  he  shown. To obtain 
the interaction  diagrams,  one  uses  previous  results,  illustrated  in  Figures 3,  
4, 5, 6, and 7. 
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Expanding  one of the  terms  yields  the following: 

+ <a I HI(2) 

In associating  the  above  terms  with  an  interaction  diagram, one finds 
that  some  terms  can  have  more  than one possible  configuration  which  gives 
nonzero  results.  This  occurs  especially for those  nonzero  terms which violate 
the  requirement  that  final and initial  states be  the  same. In other  cases, one 
of the  possible  combinations  corresponds  to  the  term  that  contributes  to  the 
interaction  energy.  These  situations are illustrated in  Figure 8, where  (a),  
(b ) ,  and (c)  correspond  to the first  category,  and  (d), (e) , and (f)  to the 
latter  cases.  

Note  that  diagrams ( a ) ,  (b) , and (c) of Figure 8 do  not  contribute 
to  the  interaction  energy  and  only  (d) of the  remaining  group  contributes. 
The  photon states  corresponding  to  diagrams  (a),  (b) , and (c)  in  Figure 8 
are: 
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I II I II I II 

I 

Figure 8. Interaction  diagram  corresponding  to  various  nonzero 
configurations of terms  in  equation  (69). 

A s  one can  see,  these photon states may be associated with various  inter- 
mediate states in  the  diagrams.  The  ordering of these states may  be  obtained 
by reading  the  matrix  elements  from  right  to  left as one follows a diagram 
from the  bottom up. 

The  interaction  diagrams  corresponding  to  the  terms of equation  (69) 
are listed  in  Figure 9;  only  one  configuration for  each  term is shown,  whether 
it contributes  to  the  interaction  energy or  not. The  listing of these  diagrams 
is the  same as the  ordering of the terms  in  equation  (69).  Analysis of 
Figure  9  shows  that  only six diagrams  contribute  to  the  interaction  energy: 
the  fourth,  fifth,  and the last four.  The  remainder of the  diagrams  in 
Figure  9  correspond  to  either  unacceptable  situations or  to  self-interactions 

I 
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I I I I  I I I  I I t  I I  

Figure 9. Interaction  diagrams  corresponding  to 
te rms  of equation (69) .  

between either of the  atoms  and  the  radiation  field. Of the  six  terms which 
contribute  to  the  interaction  energy,  four  involve the electrostatic  interaction 

operator H ( 2 )  in two  different  ways.  This  can  be  seen by referring  to  the 

last   four  diagrams of Figure 9. 
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The  next t e rm to be  considered, when expanded, gives 

The  corresponding  interaction  diagrams  are  listed  in  Figure 10 where  the 
rules outlined  previously are applied  to  this case also. 

Analysis of Figure 10 shows  that  six  diagrams  contribute  to  the 
interaction  energy as before: the fourth,  fifth,  and  the last four.  The 
remainder are classified as in  Figure 9. 
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Figure 10. Interaction  diagrams  corresponding  to  terms  in  equation (70) .  

The last t e rm in  this  group  to  be  considered is given by 
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The  corresponding  set of interaction  diagrams is given in  Figure 11. Analysis 
of this  figure  shows  that six more  diagrams  contribute  to  the  interaction  energy: 
the  second,  seventh,  and  the last 

'..3 

€our  diagrams. 

4 
Figure 11. Interaction  diagrams  corresponding to te rms  in equation (71). 

The  importance of the  preceding  diagrams  lies  in  the  fact  that one now 
finds  nonzero  terms which  contain both the  radiation  field  operators  and  the 

coulomb-type  operator, H ( 2 )  , coupled  together  within  individual  factors. 

The  last  four  diagrams in  Figures 9, 10, and 11, respectively, show  the form 
of the  interactions in a systematic and  informative way. Later,   i t  wi l l  be seen 
that  these  terms  play a very  important  role  in  the  evaluation of the  interaction 
energy  to  various  approximations.  Instead of collecting  the  contributing  terms 

q 
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just  obtained, one evaluates  the last t e rm of equation (67) and  then  collects 
all the  nonzero terms which  contribute  to the interaction  energy. 

Using the definitions f o r  H"), the last term  in  equation 67 expands 
into ' 

The  terms  in  equation  (72)  contain  various  types of factors,  correspond- 
ing  to  interactions between each  individual  atom  and  the  electromagnetic  field 
o r  between  the  electromagnetic  field with  both atoms. In order  to illustrate 
those  terms we again  pick one representative  interaction  diagram  for  each of 
the  terms which does  not.contribute  to  the  interaction  energy,  but list the 
various  combinations  which do contribute.  This is necessary  since we have  to 
consider all possible  configurations as indicated by the  sums  over K ,  A; K I ,  1' 

of the operator H(" in  the  various  intermediate states. Until now,  only  one 

interaction  diagram per term  has  been  sufficient  to  take care  of the  nonzero 
terms.  This is no longer  sufficient when listing  the  possible  configurations 
for  this  term.  This  point is illustrated by considering a specific  term of 
equation (72) and listing  the  possible  configurations of this  term  in  Figure 12. 

I 
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Figure 12.  Interaction  diagrams of some of the  possible  configurations 
corresponding  to  the 13th t e rm of equation  (72).  (The photon 
parameters  K ,  A; K ' ,  h' are included  to show the  variations  in 

intermediate photon states. ) 

Analysis of Figure 12  shows  that  the first two diagrams are two 
possible  nonzero  configurations for the  13th te rm of equation  (72) , which 
contributes  to  the  interaction  energy. 

The  interaction  diagrams  corresponding to equation  (72) are listed  in 
Figure  13;  one  includes  the  various  configurations  for  the  terms which con- 
tribute  to  the  interaction  energy,  and  only a representative  diagram is 
included for  those  terms which do  not. When a given term  contains both zero 
and  nonzero  configurations,  the  configurations which contribute  are  used. In 
Figure 13, the  various  interaction  diagrams are numbered;  those which 
correspond  to  the  same  term of equation  (72) are denoted by pr imes  [e .  g .  , 
(4) and (4) correspond  to the  fourth t e rm of equation  (72) I . Analysis of 
Figure  13  shows 12  diagrams  corresponding  to 6 different  terms,  in  equation 
(72) , which contribute  to  the  interaction  energy.  This is by far the  largest 

number of nonzero  terms  resulting  from a single  term  in E . One can see 

that  out of a large  number of possible  combinations  indicated by the sums  over 
a!'¶ af t ,  a ! f 1 r ,  a number of te rms  do  not  contribute,  solely  because of the 
restrictions on the  various photon states.  Collecting all the t e rms  which 

contribute  to  the  interaction  energy  correction E(4)  , one  finally  obtains 

(4) 
a! 

a! 
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Figure 13. Interaction  diagrams  corresponding  to  equation (72). 
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Combining  E(4) wi th  all the other  nonzero  corrections,  one  obtains a 
the  interaction  energy  E to the fourth  order; that is, 

a! 

where E ( 2 )  and E (4) are given by equations  (62)  and ( 7 3 ) ,  respectively. 

It is easy  to see why one must  consider  fourth-order  corrections  to  the 
interaction  energy when considering  both  electrostatic  'and  electromagnetic 

interactions  between  atoms. In cases  where E (2) vanishes, the only  con- 

tribution  to the interaction  energy  comes  from E (4).  In this  case,  E (4) is 

simplified  somewhat  because  several  terms  in  equation (73) vanish. 

a! a 

CY 

CY a! 

INTERACTION ENERGY BETWEEN HYDROGEN I C  ATOMS 
IN THEIR GROUND STATE 

Interact Ion  Energy of the   Sys tem 
The  unperturbed  system in this case consists. of atoms I and II initially 

in  their  ground state configuration (is - is); the  electromagnetic  field is in 

its vacuum state ( 1 ,  . . . 0, . . .>) . From  the  previous  discussion,  the 

energy  eigenvalue  to  the  fourth  order is given by 

Sinc 

E =  
CY 

:e one is j nterested  in  the  corrections to E (') ra ther  than E one 
rewrites  equation (75) as CY CY' 

(75) 



where AE is defined as the  correction  to the ground state energy  due  to the 

interactions.  Henceforth, this wil l  be the only  quantity of interest. To 

evaluate  the  terms  in  equation  (76), one considers  f irst  E (2) ,  given by 

a! 

a! 

In te rms  of equation (3) , the  above  becomes 

Since  the  operator H ( 2 )  factors  into  quantities  corresponding to atoms I and 

11 and  does  not  contain  field  operators,  the  above  expression  may be wr i t ten  
as 

q 

Using  the  definition for the  atomic  eigenfunctions  given  in  equation (18) , the 
matrix  elements  in  equation  (79)  factor  into  products of the  form 



I I 111 I 

Using the relations  between  spherical  harmonics L I Z ]  , 

= (-1) m2 

one  obtains 

by setting  mi = m3  and  mz = M. Substituting  this,  equation (79) reduces  to 

Equation (81) shows that the only term  in  the  series  corresponds  to 
the case where Li = Lz = 0, and M = 0. This  term is the  monopole  contri- 
bution of the  electrostatic  potential  between  the  two  atoms. When the  charge 
distributions  are  neutral as is the  case  here,  this  term  does not  contribute. 

Hence,  one sees  that-  E (2’ is identically  zero  for  the  case  in which the  atomic 

initial states are picked  to  be  the ( Is)  ground states; that is 
I 

= o  

With this  result  the  second  term  in  equation (76) is considerably  simplified, 
since  the  various  matrix  elements  involving  the  electrostatic  operator 

H ( 2 )  wil l  vanish when the  atomic  states  considered  correspond  to  the  initial 

state. Identifying  these  factors  in  equation (73)  and  setting  the  terms  containing 
q 
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The  terms  in  equation (83) are then  the  nonzero  quantities  which  need 
to  be  evaluated  to get the  interaction  energy of the  system  to  the  fourth  order 
in  the  electron  charge e. The  interaction  diagrams  corresponding  to  these 
te rms  are summar izedin  Figure 14, in which all the  possible  nonzero  com- 
binations are included.  Referring  to Figure 14 one  can see the  reason  for 
rearranging  the  terms  in  equation (73) before  writing down equation ( 8 3 ) .  
This  rearrangement  yields the  following  groupings: 

+e’> +e’> Y 

a. The first diagram  corresponds  to  the  coulomb  type  interaction 

b. The  next  two  correspond  to  interactions of the  type 

@’> $‘1’> Q‘1> , 

c. The  next six correspond  to  interactions of the type 

@1>+;2> +(I>, 

d. The  next six correspond  to  interactions of the  type 

<H“’> +(’)> 4(’> e(’)> . 

The  above diagrams  in  Figure  14 are now used  in  the  calculation of the  matrix 
elements of equation (83). 

e.  The  last 12 diagrams  correspond to interactions of the  type 

Evaluation of Terms in Equation (83) 

The  terms  in  equation (83) are evaluated by considering  the  terms  in 
the  order  in which they  appear.  The first t e rm is given by 

Because  this  term  corresponds  to  the  electrostatic  interaction between  the two 
atoms, it has  been  considered  previously by many  authors [ 6,131. The 
procedure  used  in  evaluating  this  type of te rm is simply  outlined,  and  the 
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I II I II I I1 I II I II I II 
Figure 14. Interaction  diagrams of equation ( 8 3 ) .  
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result  is given  in  terms of quantities  used  in  this  calculation. In evaluating 
quantities of the  form  given by equation (84) , various  techniques [ 12,141 may 
be  used to obtain  approximate  results  since  the ,exact evaluation is quite 
difficult.  The  usual:  approximation  technique  is’known as the  Unsgld 
Approximation [ i l l  , which consists of replacing  the  denominator of the 
quantity  in  equation (84) by a constant  average  energy E .  Once this is done 
the  expressiongin  equation (84) is evaluated by using  the  matrix  summation 
rule  over  complete states. In this  approximation,  equation (84) reduces  to 

An alternate  approximation  used  in  this  calculation  consists of restricting the 
intermediate  atomic states to  the 2-p states. Using  this  approximation 
(which,  incidentally, is the same  used by Casimir  and  Polder, and Power  and 
Zienau) , the  expression in equation (84) becomes [ 151 

The  factoring of the  denominator  from  the  sum  over  m is due to the  fact  that 
now the  sum  over  m is just  over  the  triply  degenerate 2p states.  Summing, 
the  above  expression  reduces  to 

Since  the  electrostatic  interaction  operator  does not  connect  s-states, (4 I H r )  I .)) vanishes when I a> represents  the is ground state. 

In  this case both approximations  yield  the  same  result, if one le ts  
- 
E = 2 (Eo - E l ) .  In subsequent  terms  the latter approximation w i l l  be much 

1 9 )  
easier  to  handle;  even though,  in  the t e rms  involving H ‘a’, both  approxima- 

tions wil l  again  yield the same results with  only a different  constant. 
cy 
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I I! 
Having  introduced  the  approximation  techniques  to  be  used,  one 

I proceeds with  the  calculation of terms  in  equation (83). By substituting 

H (2) from  equation ( 3 )  and  factoring  the  atomic  eigenstates as before,  the 

preceding  equation  becomes 
q 

Using  the  coupling  rule  for  Spherical  Harmonics  [IO]  and  the  result 

the  above  simplifies  to 

The  radial  matrix  elements  may be  evaluated  using  the  eigenfunctions  defined 
by equation (21 ) .  The  result is [ 161 

The  expression  in  equation (85) wil l  be  used  to  obtain the various  multipole 
contributions  due  to the electrostatic  interaction  energy.  For  example, if one 
wishes  to  obtain  the  dipole-dipole  approximation, one lets L = I = I and sums 
over  m = +I , 0, -1. This wil l  be  done la ter  when one has the  complete 
expression  for AE. 
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The  next  term  in  equation (83) to  be  calculated  may  be  redefined as3 

(87) 

Expanding  the  above  term, one gets 

I I (n )  II(m) N*(K) ,  . . . N { , ( K ' ) ,  . . . 4 4 1 H F '  9 II(0) B(O> 

which can  be  simplified  since H(') depends  only on the  coordinates of atom I, 

and H ( 2 )  depends  only on atom 11. 
I 

II 

To  find  the  form of the  intermediate  photon  states,  one  recalls  that 

HI, I1 (2 )  consist of four  different  products of field  operators, as shown  in 

equation (52 ) .  Using  the  relations  given by equations (33) to (36) it can be 
seen  that only  one of these  products  can  have a nonzero  solution;  that is 

which is satisfied  for  the case in which N = N' = I. Thus, the intermediate 

photon state may be given by I lh ( K )  , . . . lh, (?)> . An equally  suitable 
4 

3. This type of definition wi l l  be used  throughout  the  remainder of this 
calculation.  The  form  used  indicates  the  type of operators  associated 
with  the various  interactions. 

46 



solution is given by I lit (K' ) , . . . I (z> , which is obtained by inter- 

changing  the  respective  photon  parameters.  Thus,  the  most  general  solution 

is (2) { I K A ; K ' A >  + I K ~ A I ; K ~ ) }  . This  intermediate photon state picks 

out  one term  corresponding  to K ,  A and K ' ,  A' f rom H ( 2 )  Having  established 

the  form  for  the  intermediate photon states, one evaluates  the  matrix  products 
in  equation  (88) as follows: 

-c 

A 

I, 11' 

Taking  terms  for H (2) that  give  nonzero  results  and  substituting  into 

the  respective  matrix  products, one performs  the  indicated  multiplications by 
using  the  approximations  indicated  before.  Having  done  this,  and  having 
operated with  the  field  operators,  one  obtains  the  following  for  equation  (88): 

I, II 

After  rearrangement of the  quantities  and  substitution of pi and pa in te rms  
of the  relations  given  in  equation  (47)  and  (48) , one  obtains 

4 "r 

4 
Before  one  can  simplify  the  above  result, one needs  to  replace  the  sums  over 
K and 2 by using  the well-known substitution [ 171 

VOl. c - s  W d K = ( z ; ; j - 5 S  
VOl. K2dK s d Q K  , 

K 

where (27r) -3 (Vol. ) is the  density of individual states in ;-space. Using 
the  polarization  relations  given  in  Appendix  A,  equation (91) becomes 
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The  preceding  equation  could  have  been  obtained  much easier by considering 
the  interaction diagram in,Figure 14 which corresponds  to  this  term. If this 
had  been  done, steps  required  to show  the form of the  intermediate  photon 
states could  have  been  omitted  since  the  interaction  diagram  shows  that  the 
intermediate state consists of two  photons  and  that  both  atoms are in  their 
respective  initial states. Nevertheless,  the  answer would have  been off  by a 
factor of 2 since we would have  neglected the possibility of interchanging K '  

and K . ~  This  remark  applies  also  to  the  third  diagram of Figure 14 and  to 

the  next six diagrams  that  follow, since they  too  contain  the  H ( 2 )  operator 
I, 

which gives rise to  instantaneous  emission and absorption or absorption  and 
emission of photons.  Hence,  each  one of these  diagrams  corresponds  to two 
possible  modes which are indistinguishable  and  must  be  taken  into  account by 
taking  linear  combinations  for  the photon states as was done for  the  term  just 
considered. A variation of this situation was discussed  in  conjunction with the 
remainder of the  diagrams  in  Figure 14, in  which  there are two possible non- 
zero  diagrams  for  each of the  terms in equation (73) belonging  to two possible 
unique  ways to go from  the  initial state to  the  final state. Let us  proceed  to 
obtain  the rest of the  terms  in  equation (83) using a more  direct  approach. 

The  next  term  to be evaluated is very  similar  to  the  term  just  con- 
sidered.  This  can  be  seen by referring  to  the  third  diagram of Figure 14 
which corresponds to this  term.  The  result is given by 

4- 4 

x I e + i ( K + K ' ) . r z  

" - 1 .,$ <(o) 1 e - i ( K + K l ) . r l  

which is the  same as the  previous  term,  except  that  the  exponentials  have  been 
replaced by their  complex  conjugates.  Before  computing the remainder of the 
terms  in  equation (83) , the  terms  just  evaluated are combined  into a group. 
(The  reason  for  this wi l l  be made  clear later. ) Combining  equations (92) and 
(93)  , one  defines 

4. This  point was discussed by correspondence with Prof. E. A. Power, 
London College. 
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The  next term  to  be considered  corresponds  to  the  fourth  diagram  in 
Figure 14. This   term is evaluated  using  the  previous  results  and  making  use 
of the  information  contained  in  the  interaction  diagrams. 

This  term is defined as follows: 

By referring to  the  interaction  diagrams  and  substituting  for  the  operators 

( 2 )  and H ( I )  only  those te rms  which give  nonzero results, one  obtains 
HI I1 

Operating on the photon states,  substituting  for and ';;; and  rearranging 
terms,  the  above  equation  becomes 



The  momentum  operators  may  be  replaced by position  operators by making  use 
of the well-known approximation [ 181 

Making this substitution,  replacing  the  polarization  products  using  results  in 
Appendix A , summing  over  the  atomic  states,  and  replacing  the  sums  over 
K and K ' ,  equation  (97)  becomes 

The  next  term  to be evaluated  corresponds  to  the  fifth  diagram  in 

Figure 14 and is defined by +*9IIG*+14+1 One notes 

that this   term is identical  in  form  to  that  given  in  equation  (99)  with  atoms I 
and 11 interchanged. If the  coordinates  centered on atom I were  replaced by 
those  centered on atom 11 in  equation  (99) , the result would not  be  correct 
unless  the  sign of the  exponential  factor  containing  the  internuclear  separation 
R is also changed.  The  necessity  for  this  change is that  interchanging  atoms 
also  requires  the  change of the  direction of the  vector E, because  the  assumed 
convention calls  for  to  be  directed  from  atom I to  atom II. Hence,  this 
t e rm is given by 

. (100) 

50 



The  next  term  to be evaluated  corresponds  to  the  sixth  diagram  in - 
Figure 14 and is defined by (.- p),e-A>Ie. .> II' Using  the 

interaction  diagram  corresponding  to  this  term,  and  performing  similar 
operations as for previous  terms, one  obtains 

. .  

The  form of this  term is very  instructive  in  that one sees  quite  clearly.that a 
t e r m  with K , h and K ' ,  A '  interchanged is also a possible  combination.  Thus, 
even though the  intermediate photon s ta tes   are  not made up of linear  combina- 
tions of ~ , h ;  ~ ' , h l ,  one sti l l   has two possible  modes due  to the instantaneous 

emission and absorption  process  associated wi th  the H (2' operator. Per- 

forming  similar  operations as before,  equation (101) becomes 
I 
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The  next  term is obtained  directly from this resul t  and is given by 

The  next term  corresponds  to  the  eighth  term  in  Figure  14 and is 

defined by <.. .>I . Carrying  out  similar  operations 

and  simplifications as above,  this  term  reduces  to 

The  above  quantity  could also  have  been  obtained  from  equation (100) by taking 
the  complex  conjugate of that  expression and reordering  the  various  matrix 
products,  provided  one  notes  the  interchange of intermediate states a' and 
a". Otherwise,  the  denominator of the expression  in  equation  (104) would be 
in   error .  

The  next term  to  be calculated  corresponds  to  the  ninth  diagram i n  

Figure  14  and is defined by <A* P>n<A. I$ u[ (..A> I . Comparison with 

equation (104) shows  that this te rm may  be  evaluated  using  the  previous  method 
of interchanging  the  atomic  coordinate  systems. When this is done,  the  above 
term  becomes 
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Before  proceeding  to  the  next  term, one notes  that  the  basic  differences 
in  the  last six terms just  evaluated  occur in the  energy  denominators,  the 
exponential  factor in R, and  the  matrix  products  over  atoms I and II. Com- 
bining  equations (99) (100) , (102) (103) , (104) , and (105), one obtains 
an expression for this  group of te rms  which is defined as follows: 

where 



In this term, the  matrix  elements are to be  taken  over  the  appropriate  eigen- 
states. In subsequent  discussions  this  group of t e rms  wi l l  be referred  to  
simply as X (2).  

The  next  term of equation  (83)  to  be  considered  corresponds  to  the 
tenth  diagram of Figure 14. This is the f i r s t  of a group of six terms  corre-  
sponding to  the  third row of diagrams  in  Figure 14. Due to the great  number 
of operations  involved  in  obtaining  each  term,  only  the first term  in  this  group 
wil l  be  evaluated  in  some  detail.  After  this is done,  the results of the  other 
t e rms  within this  group wi l l  be expressed as a sum of t e rms  defined by X(3) .  
Let  this  term  be  defined by 

Expanding  this  expression  and  substituting  for  the  operators H 

only the  factors which  give  nonzero  results,  the  above  expression  becomes 

(1) (1) 
I y H I I  

Operating on the photon states,  collectin2  terms,  substituting  for  the  momenta 
using  equation (98) , replacing pi and p2 in   terms of R, summing  over 
atomic  states,  replacing  the  sum  over K by its corresponding  integral, and 
substituting  for  the  polarization  relations  using  the  results of Appendix A ,  the 
above expression  becomes 

4 4 
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Performing similar operations on the next  five terms and  using similar 
definitions,  one  can  combine  these  terms as follows: 

where 

- i K .  R e 
H ( Z )  e i ~ - r i  " - -iK.r2 - 

[ (E1 - Eo) + KcK1 r - (rdi e " (rd. > 1 

" 

The  above  group of terms  shows,  in a systematic  manner,  the way the  field 
operators  and  the  electrostatic  potential are coupled to produce  nonzero 
contributions to the  interaction  energy.  These terms w i l l  be  discussed later 

in  more  detail, by expressing  the  operator H in terms of rl and  r2,  and 

e expanded  in a power series. 

( 2 )  
q 

-c -r 

i K -  r 
" 
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The  remainder of the  terms in  equation (83) to be  evaluated  correspond 

to  terms involving  products of H(') . They are illustrated by the last 12 

diagrams of Figure 14. These  terms  have  several  common  factors and will 
be combined  into a group as before.  Since  the  number of steps  required  to 
evaluate  each of the 12 te rms  is rather  large,  only the first te rm of this  group 
wi l l  be evaluated  in  some  detail.  The  evaluation of subsequent  terms is done 
in a similar  manner with only minor  deviations.  Let  this  term be  defined by 

I, II 

<A*p> I <A*p> I +.">It egp>II 

Using  the  interaction  diagrams  to  obtain  the  form of the  intermediate  states, 

and  substituting  for  the  operators H (I' only  those  factors which give 

nonzero  results,  equation (110) becomes 
1,II 
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Collecting  terms,  operating on the photon states,  substituting  for p1 and pz , 
replacing  the  momentum  operators,  substituting  for  the  polarization  sums 
from Appendix A,  replacing  the  sums  over K and K' , and summing  over the 
atomic  intermediate  states,  the  above  expression  reduces to 

-c 4 

The  remainder of the  terms  in  this  group are obtained  in a similar  mar-ner 
with only  minor  modifications.  Defining  this  group of te rms  as X ( 4 ) ,  one 
can write the  results as follows: 

X ( 4 )  = 



r 

The  above  terms are listed in  the same  order as the  corresponding  diagrams 
of Figure 14. The  reason  for  expressing  the  denominators  in  this  manner is 
to  indicate  explicitly  the  intermediate state energy  denominators  and to keep 
track on the  various  terms. A check  may  be  made  on  the  exponential  factors 
and  energy  denominators by comparing  the  first and last   terms  in equation (113). 
One should  be  able to obtain  the  exponential  factors of the  last  term by taking 
complex  conjugates of the  imaginary  factors in the  first  term.  The  remainder 
of the terms  may be checked  in a similar manner. 
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Combining  the  above results,  the  interaction  energy  correction  AE/e4 
is given by 

AE/e4 = AE(H ) + X ( 1 )  + X(2) + X ( 3 )  + X ( 4 )  9 (1 14) 
q 

where  the  above  quantities are defined by equations (85),  (941, (106), ( l o g ) ,  
and (113) .  Note  that  to  this  point  the only approximation  one  has  made  involves 
restricting  the  intermediate  atomic states to  the  2p  levels;  otherwise,  the 
above  result is good to all multipole  orders both  in  the  electrostatic  potential 
and  the  radiation  field.  The  various  approximations wi l l  be  examined  in 
subsequent  discussions. 

DIPOLE-DIPOLE APPROXIMATIONS 

Approximations to the Interaction Energy 

The results obtained  in  the  preceding  discussion are used  in  recombining 
the  individual  groups  given by equation (114) into a form  suitable  for  subsequent 
approximations.  The  dipole  approximation w i l l  be  applied  and  the results 
compared to those of Casimir and Polder.  The results wil l  be  given  in terms 
of corrections  to  the  interaction  energy  due to  only  the  electrostatic  interaction. 
In  the  dipole-dipole  approximation  this w i l l  consist of taking  the  terms 

corresponding  to L1 = L, = 1, and M = +1, 0 ,  -1 in  the  expression  for H 
q 

in  equation (3) and setting  the  exponential  terms e equal to  unity in the 
various  matrix  elements  in  equation (114). Since  higher  approximations wi l l  
be considered  later, the initial  results wi l l  be  put  in a form  suitable  for  use  in 
subsequent  applications. 

(2,) 

i K .  r 
" 

The  terms  in  equation (114) wil l  be  evaluated  in  the  order  in which 
they appear.  The first t e rm is already  in  the  form  desired;  hence, it need 
not be considered.  The  next  term X (1) is defined  in  equation (94) .  Inter- 
changing  the  coordinates for atoms I and II, and  substituting for  the  volume 
element d; in  terms of  K'dKdi2 X (  1) becomes 

K '  
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The  above  expression  may  be  factored by noting  that  the wave vector is 
given in  the  same'coordinate  system as the  electromagnetic  vector  potential 
A ( p ) .  Since E is along t; (Fig. 2) , the  exponential  factor K .  R is just 
KR cos ( K ,  R) . Additional terms depending on the  angular  coordinates of K 

are contained  in ( I + cos2 ] and  the  exponential  factors  in  the  matrix 
elements.  Hence,  one  needs to decide on the  degree of approximation to be 

used  in  the  retardation  factor e before  performing  the  integrals  over 

dfi and  dOK, . I€ the dipole  approximation  in e is used  then  the  only 

factors  depending on the  angular  dependence of the  wave  vector are the 
remaining two factors above. To determine  the  number of terms  to be included 

in  an  expansion of e , note  that  the  coefficient of the term in  equation (11 5) 

is proportional  to <rf> (.;>. If the  highest  approximation is to  correspond 

to  quadrupole-quadrupole  orders,  then  the terms proportional  to 

<r:>q2")+:> or ~ ~ ~ $ ~ ~ >  which correspond  to  dipole-octupole 

orders  in r2 and rl and  to  octupole-diple  orders  in r2 and ri must be 
included. Hencszne  needs  to  retain  the  f irst   f ive  terms in a power series 

expansion of e ; that is, 

4°C " 

A A  - 
" 

i K .  r 
" 

i K .  r 
K 

-4 

i K .  r 

i K -  r 

Letting ( K + K ' )  w and  using  the  above  expansion,  the  matrix  products of 
equation (1 15) give 

" 4 

+ -2- Cs;.F;)4 )> 
24 
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Neglecting  combined  powers of r greater  than  the  fourth  power  in rl and r2, 
the  above  becomes 

These  matrix  products  simplify  considerably  since 

where (rl) are the  Cartesian  components of the  position  vector rl . The 

first te rm is readily shown  to be zero  using  the  definitions of (<) in 

spherical  coordinates; ((a- rl) > is shown to be  zero  since 

4 -c 

i 

- 4  
i 

6 1  



In addition, all the  various  combinations of the (r) . components are expressed 

in  terms of Spherical  Harmonics5 which a r e  then  integrated as se t s  of three 
products  each.  Incorporating  these  results, the nonzero  terms of equation (118) 
are given by 

-c 

1 

The  above  sums are evaluated  using  the  results  below,  obtained  for  the  matrix 
elements  over ( rl) components. 6 

A 

i 

6. The  terms <(si (3 (5 (zp> a r e  evaluated  using  the  Spherical 

Harmonic  Addition  Theorem  twice on each  set of two, and using  the  fact 
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where < r2 > and < r4 > are  matrix  elements  taken  over  the  radial  portion 
of the  atomic  eigenstates  given by equation (86). To obtain results in   terms 
of K and K '  and  their  corresponding  angular  coordinates, one replaces CJ 

by ( K + K ' )  at the end of each  calculation. For instance,  the  second  term of 
equation (119) may  be  expanded  using  the results of equation  (120)  in which 
case one gets 

+ 

" 

Following  the same  procedure,  the  terms of equation (I 19) are  expressed  in 
t e rms  of K ,   K '  and  cos ( K ,  K ' )  . Substituting  these results in  equation  (115) , 
one  obtains 

A A  
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Defining cos ( K , K ' )  cos  0 , equation (122) may be written as 
A A  

In the  above result, the  various  approximations are separated as follows:  the 
first  factor,  containing only (I + cos2 e ) ,  corresponds  to  the  dipole-dipole 
approximation;  the  second t e rm containing a more  complex  dependence on 0, 
corresponds  to the dipole-quadrupole  approximation;  and  the last t e rm 
corresponds  to  the  quadrupole-quadrupole  approximation. In subsequent 
calculations  the  various X (i) t e rms  wi l l  be  put  in  this  format. 

The  next  term  to be considered is X ( 2 ) ,  defined by equation (106). 
X (2) may  be  recombined by interchanging  the  coordinates of atoms I and II in 
the  second,  fourth,  and  fifth  terms;  this  results  in  the following  expression: 

Noting  that  the  coefficient of the  above  expression is proportional  to (I.:), 
and  that  the  factors (5) (G) in  the  above  matrix  elements  give  results 

j 
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proportional  to 'I one  needs  to  retain  the first five  terms  in  the 

expansion for e  in order  to  obtain  results  accurate  to  quadrupole- 
quadrupole  orders.  xozimplify  this  expression, one needs  to show  that  the 

expansions due to  e for each of the  terms in equation (124) yield similar 
results.  The  matrix  product  (letting o = K+K') corresponding  to  the first te rm 
in  equation (124) is given by 

-4 

i K .  r 

i K - r  
.-c -4 

Retaining only the  appropriate  terms and  neglecting  the terms  proportional 

7. These  factors  alone, when e - I ,  give  the  dipole-dipole i K .  r 

approximation. 
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All  but  the last two factors  in  equation (125) have  been  evaluated  previously. 

The  remaining terms are evaluated as follows.  Take <% (a. r213 (GIi(<)  >- 
this t e rm is proportional to <(<Ii(<) j(<) t(<) > , where i, j, t, s ,  

and  q run over I ,  2,  3,  corresponding  to  the x, y, z components of r. 
Expressing  the  above  factors  in  terms of Spherical  Harmonics  and  using  the 
Spherical  Harmonic  Addition  Theorem  on  each set, one  shows  that all the  above 
t e rms  vanish.  Incorporating  these results in  equation (125) yields 

", 

j '  

s q  
4 

Letting ( K - K ' )  = v , one obtains 
4") -c 

a similar  expression as given  above for the 
matrix  products of the  second  term  in  equation (124) .  The last term  in 
equation (124) gives  the  same  results as given by equation (126) .  This is 
because of the  alternation of plus  and  minus  signs  in  the  various  products  in 
equation (125) .  The  terms having  opposite  signs a r e  those which  do  not 
contribute. By combining  the first and last terms  in  equation (124) , X ( 2 )  
becomes 
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The  above  expression  may be simplified  further; but f o r  the present  purposes, 
this is adequate  since at this  point  one  wishes only to separate  the  various 
terms  corresponding  to  the  various  approximations. a 

The  next  term  to be evaluated is X ( 3 ) ,  defined by equation (109). 
This  expression  may  be  recombined  using  the  following  procedure.  Interchange 
coordinates of atoms I and I1 in  every  other  term  in  equation (109) and 
rearrange  the  quantities within  the  matrix  elements,  remembering  that  the 
order  of the terms  does not matter.  After  expanding  exponentials,  one  obtains 

8. Note that  the  sums  over i, j are more  complex  and  that one needs  to 
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1 
(El - Eo) [(El -Eo)  + & c x ]  [(El -Eo)  + & C K  7 ‘[(E1 -Eo)  + & C K ]  

X (3)  is obtained by expanding  both  exponentials  in K -  rl and K -  r2 and 
neglecting  the  matrix  terms  proportional  to  the  power of r greater than six. 
Neglecting  the  higher  powers is necessary  since if one sets  exponentials  equal 

“ “ 

to  unity,  the  leading  term is (. (2) (<)i (<) j>. The  lowest  term  in H (2) 
q _ . A .  q 

corresponds  to  terms  proportional  to (ri) ’ ( r ~ ) ’  which makes  the last terms 

in  equation  (128)  proportional  to (rf r;). These  factors  then  correspond 

to  the  desired  octupole-dipole  orders.  The  above results are further  simplified 

by making  use of the  ri,  r2 dependence of H . For  instance,  the sum q 
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zero,  even though each  individual  term  does  not  necessarily  vanish.  For 

example,  in  evaluating  the  term <Hp’ (<)2 (c)~(<)~>, one replaces  the 

components (r,) by their  respective  Spherical  Harmonic  equivalents,  and 

then  substitutes for Ht2)  in   terms of rp and r?, and Y and Y- 

& 

i Ma% M 

q L1 L2 
Factoring  the  matrix  elements  into  factors  depending  only on atoms I or II, 
one finds  that  the  conditions for nonzero  terms  resulting from the  Spherical 
Harmonics  require  the  sums  over Li and L, to  terminate at a given L,, L, 
value.  Hence,  choosing  the  lowest L, one sums  over  the  appropriate  range 
over M. In this case the  term  gives a nonzero  result which in  turn is 

cancelled by (5) (5) (<),>.A similar procedure is used  to  show  that 
q 3 2  

the  fourth  factor  in  equation (128) , -consisting of four  terms of the  form e (2) (5) (<)i (5) (5) (r2) , adds up to  zero.  This  may be verified 

quickly by taking  each  corresponding set of terms and  interchanging  the  labels 

on the  quantities,  and,  since  H  (ri, r2) = H ( r2 ,  T i ) ,  the  sum of te rms  
q  q 

vanishes  identically.  Thus,  the  nonzero  terms which contribute  to  equation 
(128) a r e  given by 

q  q - >  j 

(2) (2) 



- 

Later on, subsequent  simplifications wi l l  be performed when each of the 
preceding  terms is considered. 

The next  group of terms  to  be  considered is defined by X(4) and is 
given  in  equation (113). X (4) is simplified  using  the  same  techniques as 
before  and results in the  following  expression: 

+ 1 
[(El - Eo) + H c K ]  [(E1 - Eo) + (E1 - E ) (El  - Eo) + X ~ C K '  

0 1  [ 

1 
(E - E  ) + H C K  (E - E   ) + ( E  - E  ) + X C K + K C K '  i o  ] [ 1  0 1 0 

] [(E1 - Eo) + X C K  1 

Expanding  the  exponentials as before and retaining  the  appropriate  terms, 
we  now have 
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-1 ( K - K ' )  ' R 1 
+ 

[(El - E o )  + h C K ]  
2(E1 - Eo) [(E1 -Eo) + & C K '  1 

-4 4 

The  above  expression  has two distinct  terms with coefficients  e-i(K+K') 
44 4 

and  e 
show  that  the two te rms  may be combined  into a simpler  expression.  This 
wil l  not be done in  general,  rather  each one of the  above te rms  wi l l  be con- 
sidered  as  corrections to various  multipole  orders of the  electrostatic  inter- 
action  energy  given by equation (85). Once  the X( i )  t e rms  are defined, as 

-i (K-K' )  r , as well as various  denominators.  Subsequent  calculations 
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above,  one  can w r i t e  the interaction  energy  AE  in  terms of corrections 
resulting  from  various  approximations as 

AE/e4 = AEd - + A E   + A E  
d-q q-q 

Dipole-Approximation &d-d 

The  terms  corresponding  to  the  correction  energy  AE  have  been  given 
as sums of terms  corresponding  to the various  approximations  to be considered 
in  this  calculation.  To  evaluate  the first te rm A E  which  belongs  to  the 

dipole-dipole  approximation,  one  collects all the first terms  in  the  X(i) 
expressions  and  adds  them  to  the  electrostatic  dipole-dipole  interaction  term 
given by equation  (85).  These  terms are obtained by letting Li = L, = I and 
m = -1 , 0, +I in  equation  (85) ; this  yields 

d-d’ 

Summing  over my and  redefining  this  quantity as X (0) ( I )  , one  obtains’ 

The  corrections to this  term, due to  X(i)  , where i = I ,  2, 3,  4, are given by 
the first term  in  each of the  expressions  given by equations (123) , (1271, (1291, 
and (131) .  Combining  these  leading  terms,  the  interaction  energy A E  to first 
order  (dipole-dipole  approximation) is given by 

9. Note that (rf > is a matrix  taken  over only  the radial  portion of the  eigen- 
function  given  in  equation  (86). 
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This  expression  may be readily  simplified by summing over  the  i, j and I , s. 
These  sums  contract  easily due to the  6-functions  included  in  the respective 
terms. When evaluated,  the sums in question  give 
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$ { 1J 
6.. - ( K ) ~ ( K )  - ( K I ) ~ ( K I )  .+  ( K ) ~ ( K ' ) . ( K * K  A A  A A  A A A A l  

j J J 

Further  simplification is attained by expressing all the  coefficients  in  terms of 

(rt > and (r; >. This is accomplished by using  the  sum  rule [ I , 191 

and  the  approximation [ 151 <l I I m> = -!E 
given  in  equation (98). lo The sum over I is over  the  electrons of atom I and 
the  sum  over m is over  the 2p atomic  states.  Hence,  the  quantity  1/2pc2 

is replaced by 

operations  above.  Using  the  results  obtained  in  Appendix B for  the  integral 
over  solid  angles  do and doKl and  using  the  definitions KR b, K'R E j3 , 

('1 - E  m )<4 Tim>, 

<r2> (Ei - Eo) 

3 (Ai c)2 
, which is obtained by carrying out  the  indicated 

K 

the  second  term  in  equation (134) reduces  to 

IO. Reference 19 gives  this as 47rp 2 ~ ( a ! ~ , a ! )  l < c t  I 1 a1>l = 32f' , 
CY' 

where (E - E ) = 2 T H V  (at,a!) . CY' a! 
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where 

where one  defines  the  above  expression as in X (0) (') , the  superscript 
denotes  the  degree of approximation as before.  Letting  (El - E  )R/!c = a, 

the  coefficient of equation  (137)  may now be expressed  in  terms of X (0) (l) as 
follow: Taking 

0 

equation  (137)  becomes 

Applying similar  modifications  to  the  third  term in equation  (134)  and 
remembering  that the sums over i ,  j result in (1 + cos2 0) , one  obtains 

-i ( K + K ' )  * R 
" - 44 - 

+i ( K + K ' )  R 
-t 

e 
] [(E1 - Eo) + H C K '  1 

44 4 

- i ( K - K ' )  - R 
+ ~-~ .Kc ( K + K ' )  e 

[ ( E i  - E ) + M C K  
0 

] [ (El - Eo) + M c K '  1 (139) 
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Evaluating  the  integrals  over dQ using  results  in  Appendix B and  using  the  same 
definitions,  the  denominators  in  equation (138) may  be  modified  to  give 

+- I +  (b + P )  
(a + b) (a + p )  (a + b) (a + p )  

The  next  term  to be evaluated is given by 

To  consider  the  sum  over i, j ,  one defines ( dij - ( K ) ~ ( K )  ) as 9' i j .  

Substituting  for H(2)  from equation (3) this  term  gives 

A A  

j 

q 

M 
i L The  matrix  elements  containing (3 and Y a r e  evaluated by taking  each of 

the  components (Ti) expressed in terms of Spherical  Harmonics;  the  results 
are: 

4 

i 
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and similar  results are obtained for (G) Noting that the Ll, Lz values 

are restricted  to Ll = L, = I , equation  (142)  reduces  to 
i' 

Performing  the  above  sum  over  i, j and  the  matrix  multiplications,  one 
obtains 
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Substituting  this  in  equation (141) and  redefining  the  constant  terms  yields 

Performing  the  integration  over e using results  in  Appendix B the 

above  equation  simplifies  to 
K y  ' K  

The  last  term in equation (134) is simplified  considerably  since  the 
sums  over i, j and 1 s collapse  to (1 + cos' 0) .  Carrying out  the  integrations 
over dQ and modifying  the  results  as in previous  terms, one obtains 

1 (2a + b + p )  
x { (b:p) [ ( a +  b)' + ( a +  b) ( a + p )  (2a) 1 

-k 
1 (2a+ b + p )  

2a ( a  + p )  (a + b) (2a + b + p)  (a + p )  + ] } . (148) 

The  above  result  may be expressed  in a more  symmetric  form by rearranging 
the  fractions as follows: 
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I 
( a t b )   [ ( b + P ) ( a + b ) +   ( a + b ) ( a + p )  

Collecting  terms,  one  obtains  the  following  expression  for  the  interaction 
energy  AE/e4  to first order: 

where  the  above  quantities are defined  in  equations (133),   (138) , (140) ,   (147) ,  
and (149) .  This  expression  gives  us  the  interaction  energy  to first order  
expressed as groups of terms  corresponding  to  various  types of interactions. 
The  reason  for  writing  equation (150) in  this  form, as mentioned earlier, is 
to  pinpoint  the  sources of the  interaction  energy.  For  instance,  the first and 

fourth  term r X ( 0 )  ( I ) ,  X ( 3 )  ("1 depend on the  electrostatic  interaction 
L 2 

through its operator H"); whereas,  the  other  terms are independent of H . (2) 
q I4  1 q 

In addition, one notes  that X (3)  'I' is due to a mixture of electrostatic and 
field  operators  and  the  remainders are due to  either  the  electrostatic  operator 

H(2) o r  the  field  operators A. P and/or A.A. These  terms are discussed 
" 4 4  

q 
further in the  following  paragraphs. 

Comparison with Previous Results 

The  expression  given by equation (150) corresponds  to  the results 
reported by Casimir  and  Polder [ I ]  , and  Power  and  Zienau [41. Part of these 
results agree with those  reported by Leech [2] in his attempt  to  solve  this 
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problem  to first order. In particular,  the  term  corresponding  to X(3)  (1) 
agrees  with  equation (29) of Leech’s  paper [ 21. This  may  be  seen by making 
appropriate  substitutions of variables  and  constants as follows: x - b, 

X I -  X ( 0 ) ( l ) ,  and { F(b)  + 2 G(b))  -l.(sinx X + 3 cos X x - 3 sin x ). . 
X2 

Agreement with  Leech’s  work is also found for X(1)  (‘1 to within a factor of 

2 and  with various  terms  contributing  to X(2)  ( I )  and X(3)  (I). No further 
comparison is possible  since  he  arranged  his  expressions  differently than is 
done here.  Leech’s  inability  to  verify Casimir and  Polder’s  results is because 

of this e r r o r  in X ( I )  (I) and because he  obtained  the  limiting  cases  before 
doing  the integrations  over p .  These  integrations  are  required  to show  that 
equation  (150) is indeed Casimir  and  Polder’s  result.  This is done below to 
show  the correctness of equation (150). 

To perform  the  integrations  over p in  equation (150) one considers 
once  more  each  one of the  terms  containing p integrals  and then recombines 
the  results  to  obtain an expression involving  only integrals  over b. The first 

element  to  be  considered is X ( I )   ( I )  defined by equation (138) .  Rearranging 
factors  yields  the  integral  factor given by 

These  terms may be evaluated  using  the  results  given in Appendix C. For 
example,  the first te rm above transforms  into 

A similar  transformation  may be made in the  integral  containing  G(b) and 
G(p)  . Using  results given in Appendix C for  the p integral  in  equation  (152) 
and for  the  term  containing  the G function  gives  the  desired  results  for  the 

expression in  (151).  Substituting in X (  I )  (” yields 
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m 

( b 4 + 2 i b 3 - 5 b 2 - 6 i b + 3 )  e 'IT 2 i b  

1 

- (b4 - z i b 3  - 5b2 + 6 i b +  3) e 
- 2 i b J  I 

-I 

(153) 

The  next  element  to be considered is X ( 2 )  (I) given by equation (140). 
To perform the p integration  it is necessary to rearrange the  fractional  factors 
as follows: 

(*)[(a: b) a + @  ( a +   b ) ( a + @ )  
+"- I +." 1 

With this  modification, X ( 2 )  (I) becomes 

By arranging the terms in this  manner,  one  readily  obtains  the p integral of the 
second  fraction.  Analysis of this  fraction  shows  that  it is symmetric  in  b  and 
p in all the  factors  except  the one containing  (b - p )  . Interchanging b and p 
results in a change of sign. This  feature is utilized by taking 
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and  separating  the  above  quantity  into  two  parts  given by 

m 
I 03 

I - s  . . .  d b  f . . .  d p + -  f . . .  d b  f . . .  d p  , 
00 00 

2 O  0 2 o  0 

then  interchanging  b  and p in  the  second half to  obtain 

00 
I 

00 00 
I - s . . .  2 d b f  . . .  d B - -  s . . .  d b s  . . .  d p  . 2 

m 

0 0 0 0 

Hence,  one sees that  this  part of equation (155) gives a vanishing  contribution. 
Using  results  in  Appendix C y  the  other  portion of equation (155) is integrated 
over p ,  resulting  in 

(1) - 16a4 X ( 0  (1) X(2)  - - 3 2 ’  [-?i f b 4 ( a +  d b  b) ( ( b 2 +   3 i b -  3) e i b  - (b2 - 3 i b  - 3) e - i b /  
0 

71 + -  4i s b4 (a c b) d b  1 (b4 + 2 i b 3  - 5b2 - 6 i b +  3) e 2 i b  
0 

- (b4 - 2 i b 3  - 5 b 2 +   6 i b +  3) e 
-2 ib1]  ‘ -(156) 

(1 )  X (3)  is already  expressed  in  terms of an  integral  over  by  hence, one 
only  needs  to  replace ( F(b)  + 2 G(b) ] by its definition. Thus, one  obtains 

x ( (b2+ 3 i b  - 3) e i b  - (b2 - 3 i b -  3 )  e- ib]]  . 
(1 57) 
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The  next  term  to be considered is X(4) (I)  defined by equation  (149). 
Before  performing  the p integration it is necessary  to  rearrange  the 
denominators  involving  b  and p ,  in a manner  similar  to  the one  used in 

simplifying X ( 2 )  . In doing  this,  one is guided by the  symmetry  displayed 
by the  quantities  involving  b's  and p's .  Considering  the  fractions  in  equation 
(149)  and  rearranging  factors  yields 

+ a ( b  + p )  + p ( a  + p )  + b(a + b) ' ] +  a ( a + b ) ( a + p ) ( b + p ) ( b - p )  

The last term  in the  right-hand  side of equation  (158) is symmetric  in b and p 
in all terms  except  (b - p )  . Performing  the  same  operations  leading up to 
equation  (156) , indicates  that  the  second  term  in  equation  (158)  does  not  con- 
tribute  to  the p integration of equation  (149).  Hence,  considering  only  the 

first te rm in equation  (158) , X (4) ( I )  becomes 

00 

x (4) (I) = [ 4a52$0p] y b d b   p d p   [ F ( b )  F(p)  + 2 G(b)  G(p)] 
0 0 

x ( a ( a +   b ) 2  [&+&I ] ' 

(2a + b) 

Recombining  the  above  factors  shows  that  the p integrals are the  same as in the 

first t e rm of equation (1 55).  Using  results  obtained  in  Appendix  C, X (4) 
becomes 

(1) 

a3 



x (4) 
( I )  = 4a5 X(;) (I) 7 ( 2 a +  b) b d b  

0 
a ( a +   b ) 2  b5 

x (  5 [ ( b Z + 3 i b - 3 )  e i b -  ( b 2 - 3 i b - 3 )  e - ib]  

+ L  4 i   [ ( b 4 + 2 i b 3 - 5 b 2 - 6 i b + 3 ) e  2 i.b 

- 2 i b ]  } - (b4 - 2 i b 3  - 5 b 2 +   6 i b +  3) e 

With all the  terms in equation ' (150)  given in  te rms  of integrals  over  b and 

X(0)  (I)  as coefficient,  the  interaction  energy  correction A E  may now be 

expressed as a function of these new terms by separating  the  integrals  over 

e and  e *' as follows: 

d-d 

*i b 

m 

AEd-d = X(0)'')  { i +$$ b 
0 

x [ ( b 2 +  3 i b  - 3) e - (b2  - 3 i b  - 3)  e-ib] i b  

'3s ib4 [ - ( a + b ) + $  ( ( a + b ) ' ) ]  
4a3 * d b  - a 2a2 + a b  

0 

x [ ( b 4 + 2 i b 3 - 5 b 2 - 6 i b + 3 )   e Z i b -   ( b 4 - 2 i b 3 - 5 b 2 + 6 i b + 3 )  e 1 . (161) 

Note that  the first te rm of the  above  equation results when only  the electrostatic 
interaction is considered;  this  yields  the  proper  limiting  case. By recombining 
the  fractional  quantities of the  above terms,  one obtains 

2a +%[ a ( a + b ) ' ]  b ++ [ 2a2 ( a + b ) 2 ]  + a b  ) = (&) ' 

(a + b) 

84 



Substituting  into  equation  (161)  yields  the  following  expression for AE d-d * 

m 

AEd-d = X(0)  
b d b  [ ( b 2 +  3i;;  3) e i b  - (b2 - 3 i b  - 3) e J ab4 

0 
2 i  - ib 1 

03 
4 a3 d b  [k+ -b3 ] x [ ( b 4 + 2 i b 3 - 5 b z - 6 i b + 3 ) e   2 i b  += x a a ( a + b ) '   2 i  

(b4 - 2 i b 3  - 5 b 2 +   6 i b +  3) e - 
2 i  

This is essentially  the  Casimir  and  Polder  result  expressed in te rms  of 
complex  quantities.  The  singularities  appearing  in  the  above  expression  present 
no  problem,  because when using  stationary state perturbation  theory  to 
approximate  physical  situations,  one  takes  the  "principal  value" of the sums 
or  integrals  appearing  in  the  results.  To  transform  equation  (162)  into real 
quantities, one considers a contour  in  the  complex  plane which includes  the 
interval of integration  in  equation  (162).  This is done by taking  appropriate 
contours which include  the  real axis. The first integral  term  in  equation  (162) 
is integrated by first considering its factors,  as follows.  Taking 

I- - ,- m L ( b 2 + 3 i b - 3 )  e i b  (b2 - 3 i b  - 3) e 
- 

0 
2 i  2 i  -ib 1 

and  letting  b - - b in  second  integral, as well  as exchanging  appropriate  limits 
of integration,  results  in  the following expression 

+m 
d b   ( b 2 + 3 i b - 3 )  e f -  

i b  

J a b 3   2 i  
-W 

The  principal  value of this integral is obtained by using  the  values  given 
in Appendix C ;  the  result is 

00 

d b  (b2 + 3 i b  - 3) e i b  
P.V. J a1;3 2 i  = -(&) . 

-00 
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The results for  the  other  integral  terms  in  equation (162) are 

m 
d b  [ (b4+  Zib3 - 5b2 - 6 i b +  3) e 2 i b  (b4 - 2 i b 3  - 5 b 2 +   6 i b +  3) e 

-2 i b  

p.v. s 2 i  
0 

2 i  

=(&) ' 

m 
d b   [ ( b 4 +   2 i b 3  - 5bZ - 6 i b +  3) e 2 i b  (b4 - Zib3 - 5 b 2 +   6 i b +  3) e - 2 i b  

'"' s - 2 a b ( a +  b)Z 
0 2 i   2 i  

m 

= -($)+ J d y  ( y 4 + 2 y 3 +   5 y 2 +   6 y +  3) e -2 Y 3 

0 (a2 + 3, 

where i y  b  in  the  integration  containing  e , and  -iy = b  in  the 
+ 2 i b  

integration  containing e . (See  Appendix C for details. ) Combining 
these  results  indicates  that the contributions of the  residues at the  b  origin 

- 2 i b  

- 

4a3 x(o) (I) O0 d y  (9 + 2y3 + 5y2 + 6y + 3) e -2 Y - - 
AEd-d 3 T  S . (163) 

0 

Having  AE  in  the  above  form  allows  one  to  compare  results  directly  with d-d 
those of Casimir  and  Polder as given by Power  and  Zienau  in  equation (28) of 
Reference 4. This is accomplished by letting  y E uR,  (E - E ) /fi c = E  and i o  
recombining  the  coefficient  into  dipole  moment  matrix  elements,  Making  these 
substitutions, as wel l  as using  the  definitions  for a, equation (163) becomes - 

4(E1 - EoI3R3X(O) (1) 03 R ( u R ) ~   d u  e -2R u 

A Ed-d 
- - 

( - w 3  ( 3  TIT) 0 s -  
R4 

M C  
+ U  
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Replacing X (0) (I) in   terms of the expression given in equation (133) yields 

4 (El - EOl2 +1">(.2"> O0 

.I- u4du e - 2 R u  

AEd-d 
- 
" 

327rR2 ( X C ) ~  
O [( Ela-cEo)' + 

. (164) 

The  integral  form is in  agreement with  previous  results.  Comparison of 
equation  (164) to equation  (28) of Reference 4 shows  that  Power  and  Zienau 
omitted  some  factors of kic.  The  reason  may  be  that  in  part of their  discussion 
they let XI = c = 1. Analysis of the rest of the  factors  in  equation  (164) is 
simplified by writing down equation  (28) of Reference 4: 

M 4 < W ) >  <9(2)> E2 O0 A E  - - -  s u4 e -2uR 
d u  

7r McR2 
0 [E2 + u2I2 

x ( + ( u R )  ( u R ) ~   ( u R )  
2 +  5 +  6 3 +  

A comparison of this  equation  to  equation  (164)  shows  that if one lets 
(Ei  - Eo) 

. K C  
= E, wc) is left out in  the  fraction  inside  the  integral.  The 

2 
dipole  matrix  elements (q(1) > correspond  to . Power and  Zienau 

define  this  matrix  element in equation  (23) of Reference  4 as 

<rf > 
3 
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where they take the sum over  the  intermediate  2p  atomic states, This 
operation is equivalent  to  the  relation  used  here,  given by 

= - <r:> dij 
I 
3 Y 

where  m is summed  over  the 2p intermediate  states. By letting q 5 e r 
and  making  the  above  comparison of matrix  products,  complete  agreement is 
reached  between  the  results obtained here and  those  given by Power and 
Zienau [4]. 

+ 4 

Since  the  main  objective  in  this  calculation is to  obtain  the  form of the 
interaction  energy  to  various  multipole  orders, a discussion of equation (164) 
wil l  be  given after the higher  multipole  order  corrections  are  evaluated, 
There is a twofold reason for showing  the  detailed  correspondence  between  the 
results obtained here  and  those of previous  authors: (I) i t  shows  that  the 
overall  procedure  used  here is correct,  and  (2) it provides the steps  to be 
followed  in  subsequent  calculations  where a detailed  discussion is not  practical. 

D l  POLE-QUADRUPOLE APPROXIMATIONS 

I ntroduction 
The  dipole-quadrupole order  corrections, AE to the  interaction 

d-q y 
energy given by A E  are evaluated  in  this  discussion.  The  term A E  

d-q 
consists of the  dipole-quadrupole order  terms  in  the  electrostatic  interaction 
energy  and  the  second se t  of te rms  in  each of the X(i)  expressions  given 
previously. 

Starting with  the  electrostatic  interaction  energy  given by equation (85) , 
one obtains  the  dipole-quadrupole order   terms by setting Ll = 1, L2 = 2 ,  
m = 0 ,  &l and Li = 2, L, = 1, m = 0, &I. Performing  these  operations  and 

defining  these  terms by X(0)  (2) yields 
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The  next  term  corresponding  to X ( I )  (2) is obtained from  the  second 
term  in  equation (122) .  After  factors  are  rearranged,  this  term  becomes 

Separating  the  coefficient of the  above te rm and  replacing 

1 by 3 (4 c)2 3 (Kc) ' , one  obtains  the  following 

expression  for  the above  coefficient: 
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Using  equation (86), one  obtains  the  relations 

which  may  be  used  to  simplify  the  coefficient  given  in  expression (170), as 
follows: 

By using  results  in Appendix B for  the  integrals  over  da and substituting  for 
K and K '  using  previous  definitions,  equation  (169)  becomes 

In Appendix C the p integrals  for  this  expression  are  evaluated as follows 
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m 

+ 2 i  b 4 d b   ( [ F ( b )  F+(b) + 2 G(b)   G+(b)]  
0 

where 

I ( [b2 + i b i i l ]  e i b  [b2 - i b  - I ]  e 
F ( b )  = 7 - 2 i  

+ 1 ([b’i ii; I]  e i b  + [b2  - i b  - I ]  e 
F (b )  = -pf 2 i  

1 ( [ b z + 3 i i ;  31 e i b  [b2 - 3 i b  - 31 e 
F3(b)  = p - 

2 i  

+ I ( [ b Z + 3 i i i 3 1  e i b  + - [b2 - 3 i b  - 31 e 
F 3  (b)  = p 2 i  
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+ i b   [ - i b  - 11 e-ib) 
G (b) = -p 2 i  a 

[ ib3- -  2b2 - 3 i b +  31 e i b  + [ i b 3 +  2b2 - 3 i b -  31 e 
3 (b )  = 'i;3 2 i  2 i  

[ ib3 - 2b2 - 3 i b +  31 e i b  [.ib3 + 2b2 - 3 i b  - 31 e - 
2 i   2 i  

Using  these  definitions,  the result for  X(1) (2) is quite  compact. In addition, 

the  products F (b) F (b) , 3 (b) 3 - (b) , . . . etc. are just  the  difference of two 
squares,  since  the  binomials  merely  change  sign  in  the  second  term. 

+ 

The  next term  to  be  evaluated is X (2) (2)  given by the  second  group 
of factors of X(2) defined  in  equation (127). Expressing  the  coefficient of 

this  expression  in  terms of <r$> and <r;>, one  obtains 

The sums  over  i ,  j  and  t, s are evaluated  using  the  same  techniques as 
outlined  previously.  The results for  the  various  terms are as follows: 
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174) 

The  terms  containing the v  v factors  have a s imilar   form with  only a minus 

sign  in  front of the factors 2 K K'  (cos e + cos3 e) and 4 K K '  cos3 e. The 
evaluation of these  sums is very lengthy  and wi l l  not  be  given here.  The 
procedure is simply  to  carry  out  the  sums  over  t, s first and  then  over i ,  j. 

When matrix  elements of the form < (<) (G) (<) (c) are included, 

the  best  procedure is to  evaluate  the  various  combinations,  using  the  fact  that 
the result is invariant  under  interchange of t ,  s, i ,  j. Hence,  the  number of 
matrix  elements  that  need  to be  evaluated is reduced  considerably.  For 
instance,  in  this  case only 15 of the 36 possible  terms  need  be  evaluated. Of 
these, only 6 are nonzero  and a r e  given by 

t' s 

> 

(175) 

Having  evaluated  the  matrix  elements, it is much easier  to  calculate  the  sums, 
since all the zero  terms  can  be  systematically  excluded,  allowing one to  obtain 
the  above  results.  This  procedure is used  in  the  equations  to follow. The 
integrations  over dC2 are done  using  the results  in Appendix B and  using  the 

fact that  the integrals over ( I  + cos2 e) e give  the  same  result. In 
addition,  one  finds  that  the  integrals  over  cos 0 and cos3 e are related as 
follows: 

44 

*i (K+K') 

93 



The  significance of this result cannot  be  over  estimated  since  the  negative 
sign  introduced by the factors  containing v v is exactly  offset by the 

integrals  over dfi dnK . Incorporating  this  simplification  in  equation  (173) 

and  using  previous  definitions as well as performing  the  integrations  over dQ 
one  obtains  the  following  for  equation  (176). 

t' s 

K Y  
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P 

To express the  above  results  in  terms of X(0)  (2) , one uses  the  relations 

between <r2 > and <r4> given  previously.  Hence, the above  coefficients 

may  be  rearranged as follows: 

Using  these  coefficients,  equation (177) may  be  written as 

The p integrals are now evaluated  using  the results of Appendix C .  Since  the 
second  fraction  involving  b's and P's has been  shown  not to  contribute, only 
the first factor  in  equation (178) need  be  considered.  Expanding,  this  quantity 
becomes 
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X(2)  (2) = 

By using  previous results and values,  obtained  in  Appendix C ,  the  above 
expression  reduces  to 

x { [ 5 F ( b )  + 10 G(b) + 3 s ( b )  + 32(b) - (3 )  i52) F3 (b) ] 12 36 
b 

co 

+ i [ 10 F (b )   F+(b )  + 20  G(b)  G+(b) - 4 S ( b )  3- (b )  6 F2(b )  .3,(b) 
b2 

- 
b2 (180) 

0 
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1; 

where 

I [ (ib3 - 3b2 - 6 i b +  6) e (ib3 + 3b2 - 6 i b  - 6) e i b  
S2(b) = -p - - .  

2 i  
+ -  

2 i  -ibl 
[- (ib3 - 3b2 - 6 i b +  6) e (ib3 + 3b2 - 6 i b  - 6) e i b  

3,w = -p 2 i   2 i  -ib I .  
The  next term  to  be considered is given by the  second  group of terms  in  X(3) 
defined by equation (129) and  written  here as 

(181) 

The above t e rms  are evaluated  using  the  same  procedure  used  to  obtain X (3) 
except  here one has no 6 functions  in  the  sums  over t and s, to  shorten 
the work. Before  evaluating  the  terms  in  equation  (181), one notes  that  the 

first and last t e rms  involving  may be combined by using  the  symmetry 

of the  system.  Interchanging  the  coordinates of atom I by the  coordinates of 
atom II within  the matrix  elements of these two te rms  and  expanding  the sums 
over i, j and t, s, it can be  shown that 

(1) 

q 
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Hence,  one  needs  to  evaluate only  two t e rms  of equation (181). Rewriting 
these terms yields 

Expanding  the f i r s t   t e rm using  the  definition  for  H(2) , one gets 
q 

Since  the  summation  indices i, t, j ,  s go over I, 2 , 3 ,  one  needs  to  evaluate only 

six matrix  elements of the form <(<I (<) Ym" ( 1 .  , because  interchanging 

i and t does  not  affect  the  result,  Expressing  the (5 components  in  terms 

of Spherical  Harmonics, one obtains  the  following  relations: 

t Ll 

i 

4 n  
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The  significance of the  above results is found in  the 6 factor, which 

applies to both of the (<) and (<) . type terms.  This type of matrix 
L,+2 

i J 
element  selects only  the t e rms  having L, = L2 = 2 in  the  electrostatic  inter- 
action,  and  thus this term  does not  contribute  to  the  dipole-quadrupole  order 
interaction  (L, = I, L, = 2 o r  L, = 2 ,  L, = 1). TJhe reason  for  including it 
here  is that i t  is of the  right  order  in  powers of (r) and  has  the  same 

general  form as the  other  terms  in  equation (181). Since one is interested 
in  the  dipole-quadrupole  type  interaction,  further  evaluation of 

i 

(<) (q) (<) (G) is postponed  until  quadrupole-quadrupole  order 
q j 

interactions are 

The  next 

evaluated. 

term  to be  considered is given by 

The  matrix  elements <(<) Y:' > have  been  evaluated  and are given  in 

equation  (143).  They are proportional  to d which in  turn  picks  out 

the  lowest L value  and  the  corresponding  range  in  the2um  over  m in 
equation  (184).  The  other  matrix  product  has  three (r2) components,  each 

of which can  take on three  values;  hence,  one  needs  to  evaluate  every  combina- 
tion.  The terms  required are as follows: 

L,,+i '  

i 
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- (185) 

I00 



Analysis of the  preceding  matrix  elements  shows  that L, can be either I or 3. 
When referring  to  equation (184) , one  notes  that  the terms  corresponding  to 
dipole-quadrupole order  are those  for which Li = L, = I. These  terms give 

results proportional  to (rf) <rt> as required;  hence,  setting Li = L, = I 

in  equation (184) , one  obtains the desired  expression  given by 

The  term  corresponding  to Li = 1, L, = 3 corresponds  to  quadrupole- 
quadrupole  order  interactions and wi l l  be considered later. Evaluation of 
equation (184) is rather  involved since one needs  to  consider all the terms  in 
the  sums  over i, j ,  t ,  s and  m.  Since  the  expression (185) consists of 10 

different  matrix  elements  and  there are 3 possible  factors <(<). Y:" (I)> , 
one must  consider 30 different  products  in  equation (186). To show the 
procedure  used  in  evaluating  these  terms,  consider  the  matrix  product 
corresponding  to i = t = s = j = I in  equation (186) which is given by 

1 
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This result is obtained  using  equations (143) and (185). Substituting  these 
values  into  equation (1861, one  obtains 

Performing  this  group of operations  for  each  matrix  product  and  defining  this 

product as < i) (t, s, j> , one obtains all the  elements of equation (186). Once 

all the t e rms  are known, the sum  over  i ,  j ,  t, s may  be  performed  and  the 
final  result  recorded. An alternate  method is afforded by expanding all the 
sums  and  then  evaluating  each  product.  This is not  the shortest  way since a 

number of matrix  products <i > <t, s, j) prove  to  be  identically  zero,  making 

the  expansion of the  sums  much easier. After evaluation of all these factors, 
one  finds  that  the  following are  nonzero  elements, 

-+[*I ' 
<r2 <r4> - 
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a 
<2> < 2 Y  3 Y   3 Y >  = 3 I[-] (3) (5) R ' 

<3> <3Y 3,3 ,>  = - 3 6 [ G Z ) G 4 ? b 3  ( 3 ;  (5) ; 

With  these  results the sums  over  i ,  j, ty s, in  equation (186) are now evaluated. 

After  combining  the  various K components  and ( K )  unit  vectors, one 
obtains" 

A 

t i 

11. The c. denote  unit  vector  components;  the  parentheses  have  been left 
1 

out  for  convenience. 
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where 0 is defined  through ( K ) ~  cos 0 and 0 is the  angle  between 

K and  the &-axis (Fig. 2).  Including  this  result in equation (181) and 
incorporating all previous  simplifications,  yields  the  following for equation 
(181) : 

A 

K K' 
-c 

K 

(190) 

Hence, one obtains  the  dipole-quadrupole  interaction  energy  due  to  the  mixed 
terms.  This equation is the  counter part of equation (147); and by adding 
these two equations one can  obtain the interaction  energy  correction,  accurate 
to dipole-quadrupole orders,  resulting  from  mixing of the  field  and  electro- 
static  operators. 

The last t e rm in the  group  being  considered is X ( 4 )  ( 2 ) ,  given by the 
second  set of te rms  of X ( 4 )  in  equation (131): 
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The  evaluation of the preceding  factors is accomplished by following  the 

procedure  outlined  before.  The  matrix  elements of interest  are <(5 (3 
and <(z . (5. (5 t(")s>. These  have  already  been  listed in equation  (120). 

The  nonzero  combinations are: 

> 
1 J  

<(Zi(3> = T < r 2 >  I hij , i , j  = 1 , 2 , 3 ,  

Defining  the  expressions  containing  (6is - ( c ) i ( ~ ) s }  by Y ( i , j , Q y s ) ,  one of 

the sums that needs  to be evaluated is given by 

A 

Since  the  second  factor is obtained by an  interchange of rl and r2, only  one 
term  needs  to  be  evaluated  in  detail.  Substituting  for w the  quantity  that 

needs  to be  calculated  (defining  the  matrix  element as < t, q, i, j >) is given by 
t' 
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By using  the  results  given by equation (192) , the  factor  containing K K 

becomes t q  

Using  the  definition  for 9 (i, j , l  , s )  and  summing  over - s, the  above result  
transforms  into 

The  term  containing K '   K '  in  equation (193) gives  the  same result; only K~ 
t q  

is replaced by K ' ~ .  When the last factor  that  contains K K '  in  equation (193) 
t q  

is expanded, it gives  the  following  result: 
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By using  the  definitions for !? (i, j, I , s) and  summing  over s, the  above 
expression  reduces  to 

Collecting  these  terms,  the sums in  equation  (193)  become 

Analyzing  the  expression  in  equation  (193)  indicates  that when o is replaced t 
by vt  only  the sign of 2 K K '  changes;  hence,  only  the  quantity  in  equation 

t q  
(195)  changes  sign. By using  these  results to  evaluate  the  second  term in the 
sums of equation  (191)  and  performing  integrations as before as well as using 
the resul ts  of equation  (176) , equation  (194)  reduces  to 
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The p integrals are evaluated  using  previous  results and values 
obtained  in  Appendix C. Since the second  fraction  containing  b  and p does 
not  contribute  to the integral  over p ,  only the first term needs  to  be  evaluated. 
To obtain the p integrals  in  equation  (197),  one  proceeds as follows: Take 
the  f irst   term, given by 

= n f *l [F(b)  + 2 G(b)] b3db   2a+  b 
b a (a + b) 

0 

+ 2 i n  7 Ai- b d b   2 a +  b)  [F(b)  F+(b) + 2 G(b) G+(b)] , 
0 

a (a + b) 

and  the  second  integral of equation  (197) , given by 

combine  these  terms  and  obtain the  following expression  for  equation  (197): 
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00 
b4(2a + b) 
a ( a +  b) + 6 i  21 db { F(b)  F+(b) + 2  G(b)  G+(b) - y2(b) 3 Z (b) 

0 
b2 

Further  simplification is possible  for  each of the X(i)  (2) terms,  by applying 
the  definitions  for  the  various  functions  used so  far. This  may be seen by 
recalling  that  these  functions are defined  in terms of F (b)  and  G( b) , used 
throughout  this  discussion. For instance y2 (b) b2 G (b) - 2 F3 (b) , 
fF(b) = b2 G(b) - F3(b) , . . . etc. 

Dipole-Quadrupole  Interaction  Energy 

In the  previous  discussion,  each of the  elements X ( j )  (2) is given  in 
terms of an  integral  over - b ( b  = KR)  and with coefficients  proportional  to 

X(0)  ( 2 ) .  Combining  the  expressions  in  equations (168),  (172) , (180) , (190) , 
and (200) , one  obtains  the  dipole-quadrupole  order  correction  to  the  interaction 
energy AE given by d-q ' 
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+ 8 i J  b 4 d b   ( ( F F + + 2 G G + )  -j$ ( 3 3 - + 4 F 3 F : )  11 

By writing  the  above  equation" as a sum of terms,  one can  see  that the result  
reduces  to  the  electrostatic  interaction  case when the  radiation  field is omitted. 

111 addition,  each  term X (i) , i = 1, 2, 3 ,  4, is separated  into two integrals (2) 

over  exponentials  e  and  e . The  reason  for  doing  this  may be seen by 
referring  to  the  dipole-dipole  approximation,  where,  in  equations  (162)  and 

(163) , one  notes  that  only  the  integrals  over  e contribute  to  the  final 

result  given  in  equation (164).  The  integrals  over  e  and  portions of the *i b 

results  from the  integrals  over  e *2 i b  combine  to  cancel X ( 0 )  ( I ) .  One 
would expect  the  same  behavior  for  higher  approximations, so the resul ts  
given by equation  (200) are  already  in a suitable  form  for  further  analysis. 

rti b *2 ib  

& 2 i b  

QUADRUPOLE-QUADRUPOLE APPROXIMATIONS 

Introduction 
The  presentation of the  quadrupole-quadrupole  order  approximations 

is much more  condensed than  previous  discussions;  however, all the  steps 

12. In the  above  expression  the  explicit  functional  dependence is omitted. 
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necessary  to  obtain a given resul t  are either  mentioned  explicitly or the  inter- 
mediate results are given. To have a systematic  presentation,  the  procedure 
followed here  parallels  that  used  in  the  immediately  preceding  discussion. 
The  quadrupole-quadrupole  order  interaction  energy is given by 

AE = X(0) (3 )  + X(1) (3) + X(2) (3) + X ( 3 )  (3)  + X(4) (3) , (202) 
q-q 

where  the  various X ( j )  (i) , j > 0 , elements are given by the last group of 
terms  in  equations (123) , (127), (129) , and (131) .  The  electrostatic 

interaction  energy X (0) (3 )  is obtained from  equation (85) by letting 
Ll = L, -= 2; M = - 2 ,  -1 ,  0, + 1,  +2; and  Ll = I ,  L2 = 3; Ll = 3, L, = I; 
M = -1 , 0, +I.  Hence  substituting  these  values  in  equation (85) , one obtains 

Thus, X (0) (3) may be written as 



The  next t e rm to be  evaluated is given by the last group of elements 
in  equation (123): 

x [ (+) (a> (.D <r;> + (d) (+) (e:> + et>) ] 
x { ( K ~  + K ' ~ )  + 4 K K' (tc2 + K ' ~ )  cos 0 f 4 tc2 K" cos2 0 } . (204) 

The  coefficient of this  term  may be expressed  in  terms of <rf )<rt > by 

using  the  relations  previously  obtained.  Combining  the r matrix  elements, 
and  substituting for (1/2 1-1 c2) , one obtains 

- 

Again  substituting for K and K '  and  using  the  above  coefficient, as well as 

expressing  the  quantities  in  terms of - a and X ( 0 )  ( 3 ) ,  equation (204) becomes 
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The p integrals are performed with  the  aid of Appendix C .  The  results  for 
each of the  above  integrals are as follows,  (after  the p integrations,  the 
explicit  functional  dependence is omitted) : 

00 00 

= n s b 3 d b ( F + 2 G }  + 4 i n  J b 6 d b   ( F F + + 2 G G + }  Y 

0 0 

00  00 

= - 3 n  s b d b   ( 3 - 4 F 3 )   + i n   b 4 d b  ( 3 S - + 4 F 3  F l )  , 
0 0 

00 
d b  

00 

= - 2 4 n J   ( f + 6 3 4 - 3 F 3 )  + i r s  b 2 d b ( b 4 F Z F ; + 2 b 4 G G +  
0 0 

+ f f+ + 12 y4 3, + 24 F3 F;) . 

Using  the  above  integrals,  the  expression  in  equation  (205)  becomes 
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00 

+ 4 i   J d b [ b 6 ( F F + + 2 G G + )   - b 4 ( 3 3 - + 4 F 3 F l )  
0 

+ ( F ~  F l +  2 G G+) 
2 

In the  above expression,  the  explicit  functional  dependence  in  the  various 
functions  has  been  omitted.  This wil l  be done  in  the  future  after  doing  the p 
integrations,  Comparison of equation  (206)  to  the  expression  for X( l )   (2 )  
given in  equation  (172) shows the increased  complexity  in  the  higher  approxi- 

mations,  even  for X ( I )  (i) which is the  simplest of the  electromagnetic 
interaction  terms. 

The  next term  to  be considered is obtained from the last group of 
elements  in  equation  (127) ; i t  is given by 
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“ -t 

4ic e - i ( K - K f )  * R 

+ [ [(El - Eo) + 6 C K  ][(EI - Eo) + T I C K ’  1 1 

To evaluate the terms  in  equation (207),  one  needs  to  consider  three 
different types of sums, as given  in  the  above  expression.  Since  the  evaluation 
of these  sums is very  involved, only the  intermediate results a r e  given  in  each 
case. Denoting  the sums  over unit vectors (c )  by y( i ,  j )  , the first sum 
to be considered is 

i 

Using  the  matrix  values  for <(<) t(<) (<)q(<)h> obtained  before,  the 

expansion  over  t, s, q,  and  h is simplified  considerably.  Furthermore,  the 
d function  allows  one  to  collapse  the  sum  over  i, j. After  this is done,  the 

above sum  reduces  to 
i j  

The  next  sum  to  be  evaluated is 
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Summing  over -9 t first ,   and then  over i, j ,  q, h,  the  above  expression 
becomes 

Evaluation of the  last  sum  in  equation  (207) , given by 

is carr ied out by first replacing o and o1 with K and K '  in  the  above 
expression, and  then  performing  the  multiplications  indicated.  Five  different 
se t s  of ( K ) ~ ,  ( K ' )  combinations are obtained; for  instance, one of these  sets 

having no primed  components is ( K  K K K ) . The  other  groups  have  various 
t s a h  

combinations of ( K  ) and ( K ' ) .  The  matrix  elements  over (r) are 
+ 

t  t i 
evaluated  in  the  same  manner as those  for  dipole-quadrupole  approximations; 
the  nonzero  combinations a r e  as follows: 
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Using  these results, the term being  considered  reduces  to 

'( t s q h   t s q h  t s q h   t s q h   t s q h  
K K K K + K ' K ' K ' K ' + ~ K  K K ' K ' + ~ K  K K K ' + ~ K  K K K 

Analysis of equation (211) shows  that when the sums containing (v.) 
1 

in  equation (207) are evaluated, a sign change  occurs  in  those  terms  containing 
cos 0 or  cos3 e. Thus,  using  previous  results, one notes  that  the two groups 
of te rms  in  equation (207) combine  after  the  integrations  over d~ a r e  
performed  because of a sign  change  introduced  in  these  terms  in  these  operations. 
[See  equation (176). 1 Thus,  the  equivalent of equation (207) may be written as 

L 

x(  

+ 

+ 8 K 2  K" COS4 e] 
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where  one  combines  the  terms  in  equation (207) before  the  integrations  over 
dS2 are performed. An additional  simplification  to  equation (207) is accom- 

plished by expressing (p) in  terms of <r2> and  the  resulting  factors in 

terms of <r!> <r!>. After  performing  these  modifications,  expressing K 

and K'  in  terms of b  and p ,  and  listing  the  coefficient  in  terms of a 

and X (0) ( 3 ) ,  the preceding  equation  becomes 
- 

x { 5 (b2 + P2) ( I  + cos2 e)  + 8bp(b2  + p2) (cos €3 + 4 cos3 e )  2 

- 4 b2 p2 (cos2 0 - 11 cos' 0) (212) 

By performing  the  integrations  over dS2 the  above  expression  simplifies  to 

Fz(b)  F2(p) + 2 G(b)  G(p) - 11 f(b) f (p)  + 12 Yd(b) F,(p) + 24 F3(b) F3(P)] 
b2 P2 

Since  the  second  fraction  involving  b  and P does  not  contribute  to  the p , 

integral, one needs only consider  the  following p integrals: 
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m m 

= (2) (11)(12)  TF j- - d b  ( f + 6 3 4 - 3 F 3 )   + i a  j- - b 6 d b  ( ( F a F l + 2 G G + )  
b ( a +  b) ( a +  b) 

- 2 ( f  f- + 12 3 4  3; + 24 F g  F l )  ] . 
b 

Incorporating  these results into  equation (213) ,  one gets 

00 

5b3 (F  + 2 G) + (4) (8) (3)  b (Y2 - 3 F3) 

- (Ii) ( I2 )  (f + 6 y4 - 3 F3) } 
b 

- 2 ([FZ F l +  2 G G+] 

-2 [ f f- + 12 y4 3, + 24 F3 F3 
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Using  the  definitions for the  various  functions, one notes  that  the  preceding 

result is separated  into  two  terms  proportional  to e and e*2 ', as done 
previously. 

zti b 

The  next  term  to be  evaluated is X (3) ( 3 ) ,  This  term  consists of the 
last group of elements  in  equation  (129)  and  the  terms of quadrupole- 
quadrupole  order in the  second  group of this  equation.  [See  equations (182) 
and (183). 1 The  reasons  for  including all these  terms  here  were  explained 

in  the  preceding  discussion.  Collecting  these  terms, X(3)  (3) is given by 

+ - x z K K K K  1 
24 ts l h  t s l h  

13. Using  equation (183) one picks  out  only  the terms for  which L1 = L, = 2. 
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<H (4 (2) (r)i(r)j(r)i(r) - - - - j >= (--&)( 4) 4(r2 5 R  r4> , i , j = 2 , 3 ,  i f  j , 

(217) 

The  remainder of the  matrix  elements are obtained by interchanging t and i 
in (Ti) and j and s in (G) . Recall  that  the  evaluation of each  element in 
equation  (217)  follows  the  same  path as that  followed  to  obtain  equation  (187). 

-L 

The  next  sum  to be evaluated  gives 

The  above  results  are  obtained by taking Li = 3, L2 = 1 in  the  expression  for 

€3"). The  choice of L values is made  using  the  results of equation  (185). 
q 

The  various  matrix  products  needed  to  evaluate  equation  (218),  [defining 
quantities as in  equation  (188) ] are: 

<1 ,2 ,2>  <I> = -1- = <1,2,2> <a> , 
3 (5) (7) R 
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Using  these results equation (218) becomes 

- f [ (3) ( 7 )  R5 ] <rf > <rt> - -  (I - 36 cos2 e + 23 C O S ~  e ) , 
K K 

where  the last step is obtained by substituting for (r6 > and (r2 > in   terms 

of <r4>.  

The  next  sum  to be considered is given by 

The  matrix  elements  required  to  evaluate  the  above  sum  have  been  evaluated 
and are listed  in  equation (220). The  quadrupole-quadrupole  order  terms are 
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Using these results,  the  sums in equation (22 
are given by 

I) are evaluated  and  the  results 

This  result is in itself interesting,  in  that  after  numerous  operations on the 
t e rms  in  the sums,  the  final  result  can be expressed  in  terms of 

( K ) ~  ( K  j 3  = cos2 e . ~n the  evaluation of ~ ( 3 )  (3) the angle 8 plays  the 

same  role  as 0 in  the  terms  having both K and K ’ .  

A A  

K , K  

The  next sum to be evaluated is 

The  sum  obtained  from  this  expression by replacing (5) and (<) has  the 

same  value  and need  not be evaluated.  Substituting  for H ( 2 )  in  this 

expression, one  finds  that  matrix  elements of the form 
cl 

need  to  be  evaluated.  The  former  group  has  already  been  evaluated  and is 
listed  in  equation (183). This  group of terms  requires  that  Li = 2 for  
nbnzero  results.  Thus,  the  quadrupole-quadrupole  order  terms  associated 

with this  sum  require  that L, = 0 to get results proportional  to ( r~><r~> . 
With these  restrictions,  one  notes  that  sums of this  type  do  not  contribute  to 
the  quadrupole-quadrupole order  results. 
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The last two sums that  need  to  be  evaluated are of the form 

- y i j  K t  K S  Kq Kh<Hq  ( r ) i ( r ) t ( r ) s ( r ) l   ( r )h ( s  >, the Other 
I ( 2 ) -  4 4 A * 

24 i j  

being  obtained by interchanging (<) and (G) . Substituting for H(2)  in 

t e rms  of ri and r2, one  notes  that  matrix  elements of the  form 

ts lh j 

cy 

considered.  The  former set is given by equation  (143) , where  one sees that 
only  the value Li = I gives  nonzero  results. To quadrupole-quadrupole  orders, 
then, L2 can  be only  unity.  Hence, this sum reduces  to 

1 

The  matrix  elements  in  this  equation are evaluated  in  the  same  manner as 
before;  except now, the  substitution of the (3 components  requires  the use 

of up to  fifth-order  Spherical  Harmonics.  These  functions  may be obtained 

using  the  definitions  for YL ( e ,  @) given  in  equation  (21).  The  nonzero 

matrix  products  corresponding  to  equation (224) are as follows: 

i 

m 
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< I )  <1,2,2,2,2> = = < I >  <1,3,3,3,3> , 

< 2 >  <1,1,1,1,2> = (%)(-) (3) (7) R = <2>  <2,3,3,3,3> 

< 2 >  <1,1,2,2,2> = ($) ( . & )  = <2> (2,292,393) Y 

<3>  <3,3,3,3,3> = (-2) (w) ' 

<3> <l,I,l, 1,3> = (-$)( <r: ,orb)  (3) (7) R = < 3 >  (2,2,2,2,3> , 

< 3 >  <1,1,3,3,3> = 
(3) (7) R 

Using  these  results,  the  sums  in  equation (224) combine  to  give 

where  the last results is obtained by replacing <r6 > <I? > in   terms of 

<r4> <r4 >. The sum obtained by interchanging (G) and (r2) in  equation 

(224) is the  same as in equation (226). Substituting  these results in 

4 
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equation (215), letting KR = b, and  factoring  common  factors,  this  equation 
becomes 

x s b d b  dS2 e - i K *  R 
K " {  a(a + b) + (a + b) 

+ (3) (4)2 b2 [I - 36 cos2 OK+ 23  cos4 O K ] +  3b4 [ I - 3  cos2 O K ]  

- a3 X(O) (3) 
" 

(7) (213(3) (5)37rr2 

x s d Q  e -ibcos ' K (  (3) (2)'b2  [I3 - 234 cos' 6 + 197  cos4 O K ]  
K K 

Using  the resul ts  of Appendix B to  perform  the  integrations  over dS2, the 
above integrals  reduce  to 
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dW e-ibcos ' K  [7 + 27 cos2 0 - 48 cos4 0 ] 
K K K 

Using the above results, equation  (227)  becomes 

x [ (3) (2)2 b2 [ (13) F 3  - 195% -Lp] 
+ b 4   [ 7 F 3 + 4 8 3 ]  ] . 

The last t e rm to  be  evaluated is given by the last  group of t e rms  in 
equation  (218) , and is given here  by 

2 (E, - E,,) + h c  ( K  + K ' )  
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The  evaluation of this  equation  requires  evaluation of six different  sums 
involving w; and v;. Later on,  one wi l l  see that it is necessary  to  do only 

I I 

the  sums  involving w .. Taking  the 
1 

first sum,  given by 

one evaluates it by using  the results of equations (120) and (210) , where  the 
various  matrix  elements  needed  have  already  been  listed.  The  results  are as 
follows: 

+ 6 ( K ~  ~ 1 ~ )  (1  - cos2 €3 + 6 COS4 e )  

The  listing of terms  ref lects  

( K ) ~  and ( K ' ) .  components, 
J 

+ (4) ( 3 )  (2)  ( 2  K '  + K'3 K )  cos3 e } . 
( 2 3 0 )  

the  expansion of (w w w w ) into  various t q h f  
as was explicitly  indicated  in  equation (211) .  The 

sum obtained by interchanging (<) and (<) yields  the  same  results  and  need 
not  be  evaluated.  The  next  sum  to  be  evaluated is given by 

The  evaluation of this  term is accomplished  using  the  results  given  in  equation 
(175) for the matrix  elements.  Since t, q,  h,  and f appear  in  different 
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matrix  elements, one must be careful when performing  the  expansions  and 
contractions of the  various ( K )  and ( K ' )  components. In addition,  since 

i j 
i, j , l  , and s are coupled-in both matrix  elements  and  the  polarization  function 
y(i ,  j , l  , s) , the sums are not  straightforward.  Applying the various  techniques 

developed  in  evaluating  previous  sums of this  type,  one  finally  obtains  the 
following result for  this  sum: 

(231) 

Analysis of the results in  equations (230) and (231) shows  that, when the  next 
group of sums  in  equation (229) , containing  (v ) instead of (w ) is evaluated, 

the  elements  undergoing a sign  change  correspond  to  terms  containing  cos3 e. 
This  property  allows one  to  combine  the two groups of terms  in  equation (229) 
because  the  integrations  over ds2 of cos e and  cos3 e give  an  additional  sign 
change which offsets  the  previous  variation  in  sign of the terms  in  question. It 
is of interest  to  note  that while this  feature of the  calculations  appears  throughout 
the  various  approximations  considered, it is necessary  to  keep the various  terms 
separated  until  the  final  sums  and  integrations  over dL? are   car r ied  out. In 
all previous cases this  has  been  done,  except  in  equation (212) , where  the 
various  terms  in  equation (207) were combined  before  performing  the  integrations 
over di2. This wi l l  also  be done here  to  shorten  the  discussion.  Hence, 
incorporating  the results given  in  equations (230) and (231) , and  combining 
the  various  elements in equation (229) , one  obtains 

t  t 
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2 a +  ( b + p )  
2 a ( a  + b) (a  + p )  

+ ( a c j 3 ( a  R 3 [ 1 +  + b) 2 a ( a  + b) ( 2 a  + b 2 a +  + p )  ( b + p )  ( a  + b) (a + p )  

+ 8 (b3p + p 3 b )  cos3 0 ] 

+ 2 b2 p" (1 + cos2 0j+4 b2p2 (1 - 3 cos2 0 + 4 cos4 e)  

+ 8 (b3P+P3b)  cos3 0 I} * 

Expressing <r2 > and <r6 > 
equation ( 2 3 2 )  becomes 

c - 
X(4)  (3) - - 

Z4 7r4 (t ic) R5 

1 (232) 

in terms of < r4 > and  rearranging  terms, 

x ( a ( a + b ) '   ( 2 a +  b) (-2 b + p  +A) p - b  + a ( b + p )  + p  ( a +  p )  + b ( a +  6) 
a(a  + b) (a + p)  ( b  + p )  (b - p) 

x ( 7 (b4 +p4) (I + cos2 0) 

+ 2 b2p2 (13 - 19 cos2 0 + 48 cos4 0) 

+ 8 (b3p +P3b)  (7 cos3 e) . 
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Expressing  the  coefficient  in  terms of a and X(0) (3)  , and performing the 
integrations  over cK2 , the  preceding  expression  becomes 

- 

x s b d b  s P d P {  a ( a + b ) 2  (&+*) (2a + b) 

The  integrations  over P a r e  executed  using  the  following  results: 



m 
b6(2a  + b)db 

= in J { Fz F f +  2 G G +  1 , 
a ( a +  

b(2 a + b)db f(b) f ( p )  + 12  34(b)  34(P) + 24 FZ(b) FS(P) s a ( a +  b)’ b2 P2 1 

Using  the  above  integrals,  equation (233) becomes 
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The  preceding result f o r .  X(4)(3)  may be expressed  in terms of polynomials in b 

and  exponential  functions  e  and e by using  the  definitions  for F (b) , 
G (b) . . . f (b) , given  throughout  the  discussion. If this is done,  the  resulting 
expression would cover  several  pages;  therefore,  this wil l  not be done here. 

*i b *2 i b  
- 

Quadrupole-Quadrupole Interaction Energy 
(3) Having  evaluated  each of the X(j) quantities  in  equation (202) , the 

expression  for  the  quadrupole-quadrupole  order  correction  to  the  interaction 
energy  may be written down using  the  quantities  defined  in  equations (203) , (206) , 
(214),   (228) and (234).  By referring  to  each one of these  equations,  one  can 

see  that  each of the te rms  X(j)   (3)  j # 0, has  been  given as sums of two te rms  

proportional  to  e  and  e *' i b  and  that  each  coefficient  has  been  expressed 

in terms of X(0)  ( 3 ) .  Hence,  substituting for the various X (j)  ( 3 ) ,  equation 
(202) becomes 

*i b 

- b4 ( 3 3 -  + 4 F3 F:) + (f f -  + 12 y4 3; + 24 F3   F3)  + 11 

+ i  I db ( ( 5 ) ( 4 ) b 6 ( F F + + 2 G G + )   - 2 b 6 ( F z F : + 2 G G + )  
m 

(a + b) 

- (4) (2) b4 (d G G" + 4 yz 3; + 24 F 3   F l )  

+ (2) (11) bZ (f f- + 12 3 4  + 24  F3 Fl)) 1 
. .  
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+az [ f  ( 7 6  ( F + 2 G )  -- ( f + 6 3 4 - 3 F a )  

+ i { (2) (7) b6 (F F+ + 2 G G') 

+ 13 b6 (F  - G)  (F+ - G+) - 19 b6 (F2 Fl+ 2 G G+) 

In the  above  expression  for AE various  groups of functions  appear  in  more 

than  one  place  and  each  group of terms  consists of two integral  expressions 

proportional  to e and e as before.  Comparison of equations (201) 
and (235) shows  explicitly  the  increased  complexity  encountered  in  going  from 
the  dipole-quadrupole to quadrupole-quadrupole  approximations. In particular, 

the  group of terms  corresponding to X(3)  (3)  is much larger than  the 

corresponding  group  in X (3)  ('I. This  shows that if  one is interested  in  the 

coupling  between H ( 2 )  and the  field  operators  for  approximations beyond the 

dipole-dipole,  one  must go on to  quadrupole-quadrupole  orders  before  obtaining 
additional  results of interest. 

q-cy' 

*i b &2 i b  

q 

ADDITIONAL RESULTS AND  CONCLUSIONS 

General Remarks 

In this,calculation  the  interaction  energy of a two-atom system  has  been 
obtained  to  quadrupole-quadrupole  orders.  The  results are given  in te rms  of 
the  various  approximations,  to  compare  the first order   resul ts  with  those of 
Casimir and  Polder [I 1 .  Subsequent  approximations are expressed in te rms  of 

the  electrostatic  interaction  energy X (0) (i) , which  in  turn  gives self- 
consistent  results  in the various  degrees of approximation.  This  procedure 
a l so   se rves  as a check on  the  coefficients  associated with the different  cases 
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considered. In addition, the results for  each  degree of approximation is given 

in   terms of expressions  proportional  to  f  (b) e and  f'  (b) e*? b, where f (b) 
is a polynomial in b (b is a dimensionless  parameter  defined by b = KR) .  Also, 
the final results are given  in  terms of functions of R (R is defined as the 
distance  between  the.  atoms) wi th  an explicit R-I dependence to show the 
modifications to the electrostatic interaction  energy due to  the  electromagnetic 
field  interactions. 

*i b 

" 

The  total  interaction  energy of the  system  may now be written as 

where  each of the  above  quantities is defined  in  equations (162) , (201) , and 
(235) .  In addition,  these  quantities  are  expressed as sums of t e rms  defined by 

X ( j )  (i) which correspond to various  types of interactions between  the electro- 
static and  field  operators. In general,  the  breakdown is as follows:  The 

electrostatic  interactions  are defined by X (0) ( i ) ,  i = I, 2 , 3 .  The  terms  resulting 

solely  from  electromagnetic  field  interactions are represented by X (I) . 
These  terms  contain  the  interactions due to  the  second-order  electromagnetic 
field  term  in  the  Hamiltonian, which is proportional  to A ( p )  . A  ( p )  . The  next 

group of te rms ,  denoted by X (2 )  (i) , includes  interactions  resulting  from 
considering both the first and  second order   terms in  the  radiation  field 
perturbation  given by A ( p )  . P (r) and A ( p )  A ( p )  . If the problem had  been 
treated  using only  the  first-order  term A ( p )  P(r)  in  the  Hamiltonian,  then 

X (I) (i) and X (2) (i) would not  have  entered  into  the  discussion.  The  terms 
resulting  from  the  interaction between  the  electrostatic  interaction  operator 

(i) 

"" 

4- 4- 4 4 "  

4 4  d d  

H (2) and  the  field  operator A ( p )  . P (r) a r e  denoted by X ( 3 )  (i) .  Finally,  the 
4 4  4- 

ri 
Y 

terms  resulting  solely  from  the  field  operator A ( p )  P (r) are given by X (4) . 
If the  problem  had  been  treated  considering  only  the  first-order  field  operator 

A ( p )  P (r) and  the  electrostatic  interaction  operator H(2) , then  only X (3)  

and X ( 4 )  (i) would have  contributed  to the interaction  energy. In this way, the 
various  contributions  to  the  interaction  energy  may be studied  separately. 

4 4 "  (i) 

(i) "" 

q 
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In subsequent  discussions,  the  dipole-dipole case as well as the  higher 
approximations are again  considered.  The  behavior  for large and small  
R (R >< X )  for  the  dipole-dipole case is considered.  The  dipole-quadrupole 
result shown  in  equation (201) is expressed  in  terms of polynomials of the form 

f (b) e , fl(b) e . A further  transformation  in  terms of real quantities 

f  (y) e-' and f' (y) e-2y is made on the resulting  expressions.  The  results 
a r e  then  examined  for  the  limiting  case of large R. The  small R case is 
immediate  since  the  radiation  interaction  terms  contain a coefficient a3, which 
for  small  R (a = R/K)  causes  these  terms  to  vanish  leaving only  the t e rm 

X ( 0 )  (2),  which corresponds  to the electrostatic  interaction only. [See 
equation (246) .  3 Finally  the  quadrupole-quadrupole  results are considered 
again  and are expressed  in  terms of polynomials  in  by as for  the  previous 
cases.  

*i b 5 2 i b  

- 

Dipole-Dipole  Approximations 

The first check  on  this  calculation is provided by the  comparison of the 
results obtained here  with  those  given by Casimir  and  Polder,  and  others.  The 
expression  for  the  dipole-dipole  approximation  generated  here  and  given by 
equation (163) is shown to  correspond  explicitly  to  the  results  reported by 
Power  and  Zienau [41. In obtaining  this  first-order  result by means of straight- 
forward  stationary  state  perturbation  theory, one also  obtains  additional 
information  regarding  the  types of interactions  involved  in  the  overall result. 
For  instance, one can  show  explicitly how the  electromagnetic  field  interactions 
combine with the  electrostatic  interaction  to  absorb  the  factor  resulting  from 
the  purely  electrostatic  interaction,  thus  allowing one  to  write  the  interaction 
energy A E  as in equation (163) .  One also  can show precisely how the 

contributions  from  the  integrals  over f (b) e a r e  eliminated by the  residues 

at b = 0 of the  integrals  over  fl(b) e * 2 i b  . Also,  these  residues  give a factor 

which exactly  cancels  the  contribution  from X(0)  ( l ) .  [See  equation  (163). 1 
The  resulting  expression  for A E  is then  found  to resul t  only from the 

integrals  containing  fl(b) e . It is for  this  reason  that  the  higher  order 

resu l t s   a re  given  in  terms of integrals  over e and e 

d-d 
hi b 

&2 i b d-d 

*i b 4 i b  



The  behavior of AE  [defined  in  equation (164) I for small  and large d-d 
R is of interest.  The  comparison of the magnitude of R discussed  here is 
made with respect  to the characteristic  wavelength h corresponding  to  the 
frequency  associated with  the is .-c 2p  atomic  transition.  Using  the  relations 
(E, - E,) = 412 T v, c = A v, one  obtains  the  connection  between A and  R, 
given by (El - E,) R / h  c = (2 T / A )  R. In addition, if one  defines K = h / 2  T ,  then 
a = R/K. Thus,  in  the case in which the  atoms are separated by a distance R 
such  that R >> X, the  result  given  in  equation (164) becomes 

The  above result  is obtained by writing  the  denominator of the  integrand  in 

equation (164) as [ { (El  - E,) R/& c } + { uR } '1 and  then  neglecting { uR } . 
This is allowed  since (E, - Eo)R/&  c >> i and  the  leading  contributions  to  the 
integral  in  question  result  from  small  values of { UR } due  to  the  exponential 

factor e -2 (uR).  This is the  same  as  neglecting (.KC K )  o r  (45 c K ' )  in  favor 
of (E, - E,) in  the  denominators of the  form [(E1 - E,) + & c K] found in  the 
expression  for A E  given by equation (134). There  the  major  contribution 

to the  integrals  over K and K'  comes  from  those  values of K and  K'SUCh that 

K , K' << (El - E,,) /&c on account of the  exponential  factors e 
integrals [IO]. Factoring  out R-5 f rom the integrand of equation ( 2 3 7 )  and 
rearranging  factors, one obtains 

2 

d-d 

" 

&i ( K + K ' ) .  R in  the 
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00 

x ( R d u )  e { ( R u ) ~  + ~ ( R u ) ~  + ~ ( R u ) ~  + 6(uR) + 3 } . -2 RU 

0 
(238) 

03 

Integrating  term by term,  using  the  integral  formula x e dx = n!/t , 

the  integral  factor  in  equation (238) is evaluated, and the  resulting  expression 
is 

n  -tx n+ I 

0 

Casimir and Polder [ 13 give  this  result  in  terms of the  static  polarizabilities of 

the  atoms  defined by (Y (I) = 2e2 <r'> . Hence,  including  e4  in  the  final 

result for  AE  and  rearranging  numerical  factors,  equation  (239)  can  be 

shown to be equal  to  equation  (56) of Casimir and Polder's  paper [I]. Equation 
(239)  shows  explicitly  the R-' behavior of AE when the  internuclear 

separation  distance  R is large in  comparison with (he characterisitic  wavelength 
5. Equation  (239)  may  be put in a simpler  form by expressing it in  terms of 

X ( O )  ( I )  as follows: 

3  (El - Eo) - 

d-d 

d-d 

Letting y = uR in  equation  (163), one obtains 
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R d u  { (uR)~ + Z(uRI3 + 5(uR)2 + 6(uR) + 3 1 e 
AEd-d = X(0) 

Comparison of equations (240) and (241) shows  that  for large R, 9") (a) 
decreases monotonically with increasing R (Fig. 15). 

1 .o 

R/% 

Figure 15. Behavior of the  correction  factor 9 (I) (R/X) for  various 
internuclear  separation  distance R/K. 

The  behavior of AE for  small  R may  be  obtained by considering d-d 
the  factors of equation (164) as follows [IO]. The  denominator  consists of two 
small  quantities;  thus, one cannot  neglect  one  against  the  other. On the  other 

hand when R is small ,  e -2uR may be replaced by unity  since  the  leading 
contributions to the  integral  in  equation (164) result for  small  values of (a). 
Finally,  the  leading  term  in  the  polynomial  in (uR) corresponds  to (uR)  -4. 
with  these  modifications  equation (164) becomes 
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00 

Writing  the  integral as { (E1 - E,,)/fic] du 
2 , and  using the 

00 
O 2  [1 (El - E o ) b  c 1 + u q  

integral  formula a2 dx/ [a2 + x2] = 7r/2 a2 , equation (242) reduces  to 
0 

To  express  the  above  result  in  more  familiar  units, one needs  to  include  the 
factor  e4, as indicated  in  equation (236) .  Using  the  following  relations, [see 
equation  (86) 1 : 

and  including  the - e4 factor, AE (R <<X) becomes d-d 

Note that when (Ei - Eo) is replaced by an average  energy [ 6 ]  , the  (-8) 
factor  in  equation (243) becomes  (-6).  Equation (243) is just  the  result 
obtained when only electrostatic  interactions  are  considered;  it  corresponds  to 
the London-van der  Waal's interaction  energy  in  the  absence of radiation fields.  

Thus,  in  the  limit of small  R,  $ (I) ( a )  goes  to  unity,  showing  that  for  small 
separations  the  interactions with the  radiation  field are unimportant  and  for 
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large  separations  the  introduction of the  radiation  field  gives  rise  to a 
weakening of the  van  der Waal's force. l4 

The  behavior of 9 (I) (R/A) for various R values (R >> a,-J is 
illustrated [ I ]  in  Figure 15. 

Dipole-Quadrupole  Approximations 

The  detailed  analysis of the  higher  approximations is not as straight- 
forward as in  the  dipole-dipole  case.  Before one can  analyze  the  equations 
corresponding  to  the  dipole-quadrupole  order  interaction  energy  AE  given 

by equation (201) , one needs  to  simplify  this  expression by substituting  the 
definitions  for 3, 32, . . . etc.  Analysis of equation (201) shows  that  each 

X ( j )  ( 2 )  consists of a group of elements having  the same  functional  dependence 
as in the  dipole-dipole  approximation,  but with the  powers of b in the  various 
denominators  decreased  from bA to b-'. In addition  to  these  terms,  each 

group X(j )  , j = 1, 2 ,  4, contains a set  of lfnewfl  quantities  defined in terms 

d-q 

(2) 

of 5'3, 3, 32. 

Using  the  relations  given in equation (201) and  the  following  equalities: 

( 1 2 3  + 36 32 - (3 )  (52) F, ] = 12 (3- 4 F3) + 36 ( 3 2  - 3 5'3) , 

( 4 33 - + 6 Y2 3, + (2)  (26) F3 F l  } = 4 ( 33 + 4 F3 F l  ) - 

+ 6 ( Y23;+ 6 F3 F t }  , 

( 3 - 4 F 3 )  = ( 5 2 - 3 F 3 }  , 

14. This  effect w a s  proposed by Verwey,  Overbeck  and  Nes in their book, 
Theory of the  Stability of Lyophobic  Colloids  (Elsevier,  Amsterdam, 1948) 
and  led  Casimir and Polder  to  consider the problem. 
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the  expression  for AE defined by equation (201) becomes 
d-q 

AE = X(0) (2) - 2’ a3 X(0)  (2) [I [ 6  b4 + 4 ab3  + a2b21 { + db 
d-q (313 5 a  a(a + b)2 

m ca 

+ I 2  s b ( a + b ) ‘  
[22b3 - { S- 4 F 3 }  d b +   2 i  s [ 4  a ( a +  a b 6  + b~ a2b5i F+ + G+} db 

0 0 

O3 b5{ 5 3 - + 4 F 3  F:}db 
m 

- 8 i  s a b5 
b2 (a + b) + 6 i  6 b2(a+  b)2 { ’2 F3 ‘t} db 9 

0 1 (244) 

where  the  above  functions are defined as followsi5: 

( b 2 + 3 i b - 3 )  e i b -  ( b 2 - 3 i b - 3 )  e 
-ib 1 ’ 

{ 3 - 4 F 3 }  = & [ ( i b 3 - 6 b 2 - 1 5 i b + 1 5 ) e i b + ( i b 3 + 6 b 2 - 1 5 i b - 1 5 ) e  -ibl ’ 
{ F F  + + 2 G G  + } = 1 r ( b 4 + 2 i b 3 - 5 b 2 - 6 i b + 1 )  e 2 i b -  ( b 4 - 2 i b 3 - 5 b 2 + 6 i b + 1 )  

-2 i b l  
41 b L 1 

{ F 3 - + 4 ~ ~ F t }  = ( - b 6 - 4 i b 5 + 1 4 b 4 + 4 2 i b 3 - 8 1 b 2 - 9 0 i b + 4 5 )  e 
2 i b  

- ( - b 6 + 4 i b 5 + 1 4 b 4 - 4 2 i b 3 - 8 1 b 2 + 9 0 i b + 4 5 )  e - 2 i b  I ’  
{ 3 , 3 ~ + 6 F 3 F ~ }  = [ ( - b 6 - 6 i b 5 + 2 7 b 4 + 8 4 i b 3 - 1 6 2 b 2 - i 8 0 i b + 9 0 )  e 2 i b  

- (-b6 + 6 i b5 + 27 b4 - 84 i b3 - 162 b2 + 180 i b + 90) e 
- 2 i b  

15. These  relations  are  obtained by using  the  various  definitions  for 
F, G, . . . F2, and  forming  the  appropriate  sums and  products. 
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Comparison of equation  (244)  to  the  dipole-dipole resul ts  given by equation  (162) 

shows  explicitly  the  terms of equation  (244)  having  the same f  (b) e , &i b 

f f ( b )  e dependence as in the  dipole-dipole  case. &2 i b  

Using  the  techniques  outlined  in  Appendix C ,  the  b-integrals  appearing 
in  equation  (244) are individually  evaluated.  Incorporating the results of these 
transformations  equation  (244)  becomesi6 

- (+) + 24 s (” - (9 + 6y2 + 15y + 15) e-’ dy 
m 

o yZ(aZ + y2) 

m 

(y6 + 4y5 + 14y4 + 42y3 + 81y2 + 9Oy + 45) e-” 

The  constant  factors  in  the  above  equation are the  residues at the  origin  (b = 0) 
of the  various  terms  considered. Adding these  constants, one sees  that  their 
sum is zero. In addition,  they  combine  in pairs;  the  residues of the first and 

third  integrals  proportional  to  (y . . . ) e-’ and  (y . . . ) e-2y add up to  zero, 

and  the  ffnewff  terms  proportional  to  (y . . . ) e-’ and  (y . . . ) e -2y also add 
to  zero.  Considering  these  terms  in two groups, one sees that  the  group 
associated with the  ffnewff  terms  has an additional y-2 factor,  which gives rise 

2 4 

3 6 

16. The  ordering of terms  in  equations  (244)  and (245) is the  same  to show 
explicitly  the  results of the  various  integrations and transformations. 
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to  a lower R-' dependence.  Rearranging" terms  in  equation (245) to reflect 
the  preceding  groupings  and  excluding  the  constants, AE may  be  written 
as follows: d-q 

+ J (y4 + 2y3 + 5y2+  6y  + 3) e 
m 

o (a2+?)  

- 2 s a"dy (y6 + 1 0 9  + 534p + 1 6 8 2  + 3 2 4 9  + 360y + 180) e-" 
m 

o ?(a2 + 9) 

+ 4 s y2dy (y6 + 4y5 + 14# + 4 2 9  + Sly2 + 90y + 45) e 
00. 

* o y2(a2 + y2) 

where  the new functions X(2 )  (a ) and  XL2) ( a )  are defined  in  the  expression 

for A E  Subsequent  calculations wil l  show  the  significance of the  above 

definitions.  Comparison of equation  (246)  to i ts  dipole-dipole  counterpart 
given by equation  (164)  shows  that,  unlike  the  dipole-dipole  case,  equation  (246) 
consists of three  separate  terms, with  one of them  being  solely  due  to  the 
electrostatic  interaction between atoms and  the others  arising  from the inter- 
actions  between  the  electrostatic  and  electromagnetic  fields. 

1 

d-q' 

In order  to  further  analyze  the  results  for  the  dipole-quadrupole  case, 
one  needs  to  examine  the  large  R (R >> X )  behavior of equation  (246).  Follow- 
ing  the  same  procedure as that  used  for  equations (237) through (243) and 

17. The last two t e rms  in equation  (245) are combined by first getting 
2 

y (a + y") as the  common  denominator. 2 2  

146 



collecting all the  terms  having  the  same  y  power  and  similar  exponential 
factor,  the  preceding  expression  becomes 

n 

OD 

- 2 j- (2fl+ i2y3 i 58y2 + 174y + 327 + 36Oy-’ + 1 8 0 ~ - ~ )  e-2y dy 
2 

0 
- 

Evaluation of the  above  integrals is accomplished  in  the  following way: For the 
integrals  having  positive  powers  in  y,  one  simply  uses  the  formula 

s x  e 

00 
n -tx 

dx = (n!/tn+’) . The  integrals  containing  negative  powers of y  may 
0 
be  combined by letting  y - 2y in  the  integral  containing e-’, resulting  in  the 
relations 

W 00 

0 0 

W 00 s y e-’dy = 
-2 -2 e-2Y dy 

0 

Doing this, one  finds that the sum of these integrals is identically  zero. Per- 
forming the  indicated  operations  and  combining  the  resulting  factors  into two 
groups  having - a and (l/a) coefficients,  equation  (247)  becomes 
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I I 

(2) 284a (2) 1854 
X(0)  (2) ] 135 T 1357~ a = { X(0)  - X(0) +- . (248) 

Using  the  definitions  for - a and X (0) ( 2 ) ,  one  can see  that  a X (0) (2) - I/R' 

and X(0)  (2)/a - i/R9; hence,  the  above  expression  may  be  put  into  the 
following form 

A B C  
AE ( R > > X )  = s+-+s 

d-q  R8 

where 

2 84 A =  135 TTI c <r12>+24> 

1854 ilc (rf) <rt> 
1 3 5 ~  (El - E,j2 

c = -  

Y 

Y 

Equation  (249)  shows  explicitly how the  electrostatic  interaction  term B/R8 
is reinforced by a factor  proportional  to  l/R9  and  decreased by a factor 
proportional  to  l/R7. To determine the relative  magnitude of these  factors, 
one  can  rewrite  the  above  coefficients  in t e rms  of atomic  units. 

Referring  to  the  equation  for  AE  given  in  terms of factors 

proportional  to R'?, R-8y  and R-', it is of interest  to  note  that  this  result 
should  be  expected from  the  general  form of AE [see equation  (246) 1. 
Hence,  one  may w r i t e  the  interaction  energy as follows: 

d-q 

d-q' 
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The  behavior of the  above  quantities  in  equation  (250)  may  be  inferred 

from  Figure  15  and by comparison of 3(2) (R/X) and ( 2 )  (R/X) to  the 

function $ ( I )  (R/A) of equation  (241).  Since  the  functions  appearing  in 

AE are much  more  complex  than g(’) (R/X) a computer  program would 

be required  to  numerically  evaluate  the  integrals  to  construct  the  plots 
corresponding  to  Figure 15. 

d-q 

Quadrupole-Quadrupole  Approximations 

The  increased  complexity of the  expression  for  the  quadrupole- 
quadrupole  order  interaction  energy AE given by equation  (235)  makes 

it  necessary  to  give only the  general  expression  equivalent  to  equations  (162) 
and  (244) for  the  dipole-dipole  and  dipole-quadrupole cases,  respectively. 

q-q 

Starting with  the  expression  for AE  given by equation  (235)  and 
q-q 

recombining  the  various  terms as in  the  dipole-quadrupole case,  AE 
may  be  written as q-q 

149 



A E  q-q = X ( 0 ) ( 3 ) + &  { [ b 3 F 3 d b [ ( 2 i b 3 + 2 0 a b 2 + $ b + a 3 )  3a(a + b) 1 
03 

+ s b ( ?- 4 F3) db 8 (6b3 + i 0 a b 2  - 7 a 2 b +   4 a 3 )  

0 a (a + b)2  1 

A E  q-q = X ( 0 ) ( 3 ) + &  { [ b 3 F 3 d b [ ( 2 i b 3 + 2 0 a b 2 + $ b + a 3 )  3a(a + b) 1 
03 

+ s b ( ?- 4 F3) db 8 (6b3 + i 0 a b 2  - 7 a 2 b +   4 a 3 )  

0 a (a + b)2  1 
- s (f + ff4 - F3) 

W 

b db 
0 

8 (33b3+  40ab2 - 40 a2b+   64a3)  
a (a + b)' 

03 

+ J (19b2 F2 - 2 3 2  + 6 F3) db 
0 

CQ 

+ i s b6db [F  F++ 2 GG+] [ ( a +  b ) 2  
2 (40b' - 1 9 a b  - 38a2) 1 

0 1 

+ i J b6db [F2 F i +  2 G G 
03 

40b2 + 4 7 a b  - 50a' 

0 "1 [ 3 ( a +  bI2 

03 

+ i s b'db [ (F  - G) (F' - G+) a ( a +  b) 
0 

] [ 13a' ( 2 a + P ) ]  

+ i s b4db [ 9 3 - + 4  F3 Fl] [-:I 03 

0 

+ i 7 b4db[Sz s,+ 6 F3 F3 8 ( 2 a 2  - 9 a b )  
0 '1 [ ( a +  bI2 1 

Q 

32 a b4 

0 

50 + i s  b Z d b [ f f - + i 2 3 4 ~ ~ + 2 4 F 3 F ~ ]  
0 
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The  preceding  expression is no simpler than  equation (235) , but it is more 
useful  since  the various functions  have  been  regrouped  into sets previously 
considered, which simplifies  further  analysis.  The IInew" groupings  generated 
may  be  expressed  in  terms of polynomials  in  b  using  previous  techniques. 
The new combinations  required a r e  as follows: 

- 

( f + 6 3 4 - 3 F s }  =y I 2 i b  
{ [b4 + 4 i b 3  - 39b2 - 1 0 5 i b  - 1051 e 

i b  

- [b4 - 4 i b 3  - 3 9 b 2 +   1 0 5 i b  - 1051 e-ib } , 

( f f" + 12 3, si1 + 24 F, F: } 

= 4 1  I b ( [ [ b 8 + 8 i b 7 - 4 0 b 6 - 1 4 4 i b 5 + 3 8 4 b 4 + 7 6 8 i b 3 - l l 5 2 b Z - l i 5 2 i b + 5 7 6 1  

+ 12  [-b6 - 10ib5  + 49b4 + 144ib3 - 264b2 - 2 8 8 i b  + 1441 

+ 24 [b4 + S i b 3  - 15b2 - 1 8 i b +  911 e 
2 i b  

-[ [b8 - 8 i b 7  - 40b6 + 144ib5 + 384b4 - 768ib3 - 1152b2+   1152 ib+  5761 

+ 12  [-b6 + 10ib5  + 49b4 - 144i  b3 - 264b2 + 288i  b + 1441 

+ 24 [b4 - 6 i b 3  - 1 5 b 2 +   1 8 i b +  911 e 
- 2 i b  

Using  the  above  relations  and  the  dipole-quadrupole  approximation, 
equation  (251)  may  be further  analyzed. It is not  necessary  to rewrite 
equation  (251)  explicitly  in  terms of polynomials  in  by  since  only a comparison 
of this  result  to  previous  answers is given. Reference  to  equations  (244)  and 
(251)  shows  that  the  quadrupole-quadrupole  result  contains  groups of te rms  
appearing  in  the  previous  dipole-quadrupole  case  but  with  different  polynomials 
in a and b. Comparison  to  equation  (162)  also  shows  that  the  quadrupole- 
quadrupolecase  again  contains  terms  having  the  same  functional  dependence 

f (b) e*i as in  the  dipole-dipole case. Thus,  one  can see that the results are 
systematic,  in  that  the  higher  approximations  can  always  be  expressed  in  terms 
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of previous  quantities  appropriately  modified,  plus  some %ew" terms. An 
analysis  can  be  made of the  dimensionality of the  various  integral  terms of 
equation  (251) in  te rms  of the  constant - a. Since a is proportional  to R, 
one  can see  that  terms  proportional  to R-7, R-8, . . . a r e  included  in  the 
various  elements of equation  (251). F o r  example, the  eighth  integral of that 
equation is an example of terms having an R-l  dependence  since  its  value 

is independent of a and its  coefficient is a3 X (0) ( 3 ) .  The  rest  of the integrals 
have  various  factors  proportional  to  l/a, l/a2, l/a3 and l /a4,  which when 

multiplied by a3 X (0) (3)  gives  rise  to the R-' dependence  indicated  above. 
Hence, one can  always  express the results of equation (251) a s  follows: 

- 
R-11 

The  algebraic  form of each of the  above  functions  can be obtained by separating 
the te rms  in equation  (251), as was  done for  the  dipole-quadrupole  approxima- 
tion. When this is done, one finds  that  each  function is the  same as in previous 

cases with  only more  complex  factors f (b)  e . Therefore,  their  behavior 
for  all R is expected  to be like  that on Figure  15, with  only a  more  rapid 
decrease  for  those  terms whose limiting  form  for  large R decreases   as  R-9 
and R-" . 

&i b 

George C. Marshall  Space  Flight  Center 
National  Aeronautics and Space  Administration 

Marshall  Space  Flight  Center,  Alabama 35812, April 10, 1970 
948-70-70-27-00 
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APPENDIX A 

POLAR I ZAT I ON VECTOR SUMS 

In the  course of this  calculation,  various  products  involving  the 
polarization  vectors E ( K )  need  to  be  evaluated. To calculate  these  relations, 

one  defines a coordinate  system (Fig. A - I ) .  

A -  

h 

f 

Figure A- I. Polarization  vector  coordinates. 

Using  the  coordinate  system  in  Figure A-1 and  the  following unit 
vector  relations: 

A A  A A  A A  
€1. €1 = €2-  €2 = K ' K  = 1 Y 

one obtains  the  various sums needed. 

W-1) 
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The first sum to be  considered is evaluated as follows:. 

The  next sum is given by 

In t e rms  of the  unit vectors of equation ( A - l ) ,  the  above  becomes 

Adding  and subtracting 

expression  becomes 

I I I '  B ' and  rearranging  factors,  this 
li I j  3i 3j 

i j  

I I 8 '  I' - ); I I I' I' 
li Ij K i  K j  li l j  3i 3j 

i j  

+ I I - 8 '  I' - I I I' I' 2i 23 tci K j  
i j K  

2i  2j  3i 3 j  
i j  
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I 

Combining  the  sums  over i, j and using  the  sum  rule  for  orthonormal  systems 

X I  . l  = 6. ., the  above  quantities  combine  into 
K 1  Kj tJ 

K 

Adding  and  subtracting I 3i I 3j 1~ 3i  3j 6.. - I '  I '  , one obtains 
i j  I 

Summing  over K in the f i rs t   sum, one obtains 

c 6i j  { 1~ 3i  3j 1 ,  6.. - I '  I' 
1J 

which when combined with  the second.  term,  gives 

A A A  A A  
where one uses the relation 2 = (2) ,X, + ( K ) ~  X 2  + ( K ) ~  X 3  and  the  one in 
equation A-I . Equation  (A-3)  may  be  expressed  in  terms of the  angle 
between K and K'  defined as 8. To find this  relationship, one takes  the 
result in equation (A-3) and  expands it over i and j. Hence, 

k ) A  
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(6ij - I  31 . I  3 j  )(&. 11 - I i i I i j )  
= 

-('31'31 32  32 33 33 31 31 32  32  33  33 
+ I  I + I  I ' I' + I '   I '  +I' 

+ ( '31  31 31 31  32  32  32  32 33 33  33  33 
I I' I '  + I  I I '   I '  + I  I I '  I '  ) 

+ 2 ( 1  I I '  I '  + I  I I '  I' + I  I I '  1' ) . 
31 32  31  32 31 33  31  33  32  33  32  33 

Combining  the  above  terms, one obtains 

C ( I  31 .1l 3i y + 2  (1 31 1' 31 )(1 32 I '  32 ) + 2 ( 1  31 1' 31 ) ( I  33 1' 33 ) 
1 

+ 2 ( I  32 I ' ) ( e  32  33 I' 33 ) } . 

Analysis of the last three  terms in the above  expression  shows  that  these 

elements  correspond  to  the  cross  terms of the product 
2 i j  

and  that  the  term ( Igi 1 ki ) corresponds to the  sum of the  squares of this 

product.  Hence, 
i 
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The  next sum consists of polarization  vector  components  given by [ I O ]  

The  next term  to  be  evaluated  consists of products of the form con- 
sidered  above  and  given by 

The last sum  to be evaluated  consists of combinations of terms 
previously  considered. It is evaluated by taking 

= ; (p I '  I * I ' . + I  I '  I . I '  
i k  i k  11 I-J ik  2k 11 2j  

+ I  I '  I . I ' . + I  I '  I I '  
2k i k  21 IJ 2k 2k 2i 2j)  



APPENDIX B 

PROPAGATIONAND  POLARIZATION VECTOR 
ANGULAR  INTEGRALS 

Introduction 

In this  appendix,  the  integrals  over  the  angular  coordinates of K and 
"c 

"c 

K'  are evaluated  in  terms of functions  depending  on  the  magnitude of and 2. 
In the course of evaluating  these  integrals, one uses  the  following  relations: 

b = K R ,  

p = K'R , 

K = sin e cos @ el + sin e sin @ e2 + cos 8 e3 
A A A A 

COS 8 = COS e cos 8' + sin e sin 8' cos (@ - 4') 

ax 
J xm eax = x e  m m-1 ax 

" J x  
a a e &  

The  single  integral  functions  over dQ are evaluated first; then  using  these 

results,  the double integrals  over dQ and dWK, are  considered.  Finally, 

the last section  contains  the  relations  satisfied by various  terms having 
exponential  factors ki ( K + K ' )  - R and &i ( K - K ' )  - R. 

K 

K 

4- - 44 + 
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Evaluation of j e k i E m j i  cosn e d Q K  

*iZ Z The  simplest  integral  to  be  evaluated  corresponds  to s e dQK . 
After  substituting  for the quantities  defined  in  equation  (B-I) , this  integral 
becomes 

j i b  ~ 

= (S) s e dx = 4 n  (F) . (B-2) 
* i b  

" 

The  next  integral  to  be  evaluated is given by J e cos 8 di2 . * i K .  R 
K 

Using  previous  definitions,  this  integral  becomes 

J 

Similar op 

= 47ri (T -7) = 47rib  G(b) 
c o s b   s i n b  

lerations a r e  used  to  obtain  the  corresponding  integral  with 
sign;  the results are 

,- e*iZZ c o s 8  dS2 = : 4 n i b G ( b )  
K 

(B-3) 

E The  next  integral is given by e cos2 8 di2 . Using  the  same 
K 

substitutions as before,  this  integral  gives 
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+ i b  

K (*i b)2 (7 i b) * i b  

2a 
j- *2 

- dx 
cos2 8 dQ = 

Choosing the upper  sign  in  the  above  expression,  one  obtains 

cos2 8 dQK = 47r - s i n b   2 c o s b   2 s i n b  ( b + b 2 -  b3 

Similarly  the  other  integral  gives 

Combining  these  results, one obtains 

cos2 8 dQ K = 47r { F ( b )  + G(b)}  547r Fz(b)  , (B-4) 

where F (b) E - sin b c o s b   s i n b  
b 

f G(b) ,  and  G(b) ".- - - . Further  

combination  yields 
b b3 

s ( I  - 3 cos2 8 )  = - (z37r) { F ( b )  + 2 G(b)}E - (Z3n) F3(b) . 

&iZ ii The  next  integral  to  be  considered is given by e cos3 e d a  . 
Using  the  same  techniques, one obtains K 
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4- 

The  next  integral is given by e *iK*R cos4 8 daK . One can show 

that  this  integral is equal  to 

,- e*iGE cos4 8 dQ = 47r ( F3(b) + G(b) -2 F3(b) } 3 4nb"  f(b) 8 
K 

(B-6) 

where  F3(b) = F(b)  + 2 G(b) and f ( b )  = b2 (F3/b) + G(b) - 8 F3(b) .  

The  first  integral of this  type  to  be  treated  corresponds  to  n = 0. 
Separating  the K and K '  variables, one  obtains 

"b 4 

When comparing this expression  to  the  results of equation (B-2) the  above 
integral  gives 
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4- 

The  next  integral is given by ss e ii(K+K1) R cos 8 d S I K  daK1  . Since 

cos e is a function of both primed  and  unprimed  variables, one needs  to  con- 
sider  this  expression as follows: Taking 

27l 
shows  that  the  integral  over d$' is simply J cos (@ - @ I )  d@I.  Using  the 

identity  cos ( @  - $ I )  = cos @ cos @ I  + sin @ sin @', one readily  sees  that  the 
integral  over $ vanishes when integrated  from  zero  to 2 r. Thus,  the  above 
integral  may  be  evaluated  using  equation (B-3) ,  as follows: 

0 

" 4 

The  next  integral is given by JJ e *i (K+K1) * R cos2 8 dQK dQKI . 
Expanding  cos' e,  one  obtains  three  terms, one of which contains  cos (@ - @ I ) .  

Eliminating  this  term,  this  integral  becomes 
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sin2 e sin' e' cos' (#  - @ I )  dS2 d 0  
K K' 

Integrating  over  d@, as before  and  factoring  the  resulting  expressions,  the 
above  equation  becomes 

JJ .*i(K+K').R 
4- & 

cos2 0 dQ dQK, 
K 

Using  the  identity  sin2 e = ( I  - cos2 0 )  , the  second t e rm in  the  above  equation 

is transformed  into  integrals  over  cos e. Using  previous  results  in  equations 
n 

(B-2) and (B-4) , the  above  becomes 

JJ e*i ( K + K ' )  R 
-4 4 

cos' e dQK d O K ,  
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Combining  equations (B-7) and (B-9) ,  one  obtains [ 21 

= 25 { F ( b )  F(p) + 2 G(b) G@) } . 

The  next  integral is given by ss e &i (K+K') R 
cos3 8 dS1  dS1 . 

K K 1  

Expanding  cos3 8, one  obtains  four  terms, one of which is independent of 

cos (4  - $I!) and the other  three are proportional  to  cos (4 - @ I )  , n = I , 2, 3,  

respectively.  Hence,  one  needs  to  evaluate  cos3 (4  - @ I )  d@ d@I by 

expanding  into  products of sin $I and  cos 4. After  doing  this  and  integrating 
t e rm by term,  the  answer is zero.  Incorporating  these  simplifications,  the 
t e rm under  consideration  reduces  to 

n 

X f 10 e cos3 e1 - 6 COS e cos3 e' 

- 6 cos3 e COS e1 + 6 COS e COS e1 } . 

Using  the results obtained  in  equations (B-3) and (B-5) , the  above  integral 
reduces to 
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where 32(b) = b2 G(b) - 2 F3(b) , 

Combining equations (B-8) and (B-IO) one obtains the following 
relation: 

" 4 

JJ ( C O S  e + cos3 e)  e di2 daK, 
&ti (K+K') R 

K 
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+", + 

The  next  term is given by JJ e *i(K+K') ' cos4 8 daK dQK . 
Expanding cos4 e, excluding  the  terms  containing cos (@ - @') and 

($ - $ 1 )  , and  noting  that ss cos4 (4 - @ I )  d@  d@' = 3/2 9 , the  term 

under  consideration  factors  into  the  following  form: 

= < [* ,- e + i K ~ c o s  e cos4 e sin e de s e i i K ' R  cos 0' cos4 e '  sin 8' dB' 

U si .ng previous  results given  in  equations  (B-2) , (B-4) , and  (B-6),  the  above 
integral is given by 

(B-11) 
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f (b)  = b2 F4(b) - 8 Ft(b) and S4(b)  = b2 G(b) - 4 ~ , ( b ) .  Combining 
the  results of equations (B-9) and (B-11) , one  obtains  the  relation 

+& "8 ss e*i(K+K') (cos2 8 + cos4 0) dQK doKI  

The first term  that  needs  to be  evaluated is given by 
-4 -c 

JJ .*i ( K - K ' )  * R dn dnKI  . Using  the  previous  techniques  and  definitions, 
K 

this  may  be  written as 

The  next  term  may be written as 
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The  next  term  contains cos2 0 and is evaluated as follows: 

Expressing  sin2 8 in   terms of ( I  - cos2 8)  and  using  the results of 
equations (B-2) and (B-4) , one finds  that 

(B-13) 

(B-14) 

The  next  expression, when expanded  using  previous  results, gives 
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, 

JJ e*i (K-K') R cos3 0 dS2 dOK, 
K 

Using  the  results of equations (B-3) and (B-5) , one sees that  the  respective 
integral  products are just the negative of the corresponding  terms  in  equation 
(B-IO) hence, 

(B-15) 

The  next  term  to  be  considered  involves  cos4 0. Referring  to  the 
equations  leading  to  equation  (B-11) , one  notes  that  the  terms  contain  cos e , 
where  n = 0 ,  2, 4. Analysis of equations  (B-2) , (B-4) , and  (B-6)  shows 
that all these  terms are invariant  under  sign  changes  in  the  exponential  factor; 
hence, 

n 

4- 4 

JJ e*i(K-K')'R 
" 4 

cos4 e da  d i l  = ss e 
-+i ( K + K ' )  * R cos4 0 da  dQK, . 

K K '  K 

(B-16) 
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APPENDIX C 

PR  OPAGAT I ON VECTOR I NTEGRALS 

Introduction 
In this  appendix,  the  integrals  over p and b (KR = b, K'R = p )  

necessary in  this  calculation are evaluated  using  various  techniques  employed 
to  obtain  the  principal  value of integral  functions.  Very few specific 
references are given since  most of the material  can  be found in  standard 
books on advanced  calculus o r  complex  variables. In evaluating  integrals of 
the  type  considered  here, one assumes  convergence at infinity  in all cases  
where  the  integral  considered is evaluated  over  contours which include circular 
paths at infinity. This  requirement is necessary  to  obtain  finite results for  
this  type of problem [I]. This  aspect of the  calculation  could  have  been 
treated by including  in  each  integral  over K and 7 a convergence  factor 

e - I y  I K ,  which would have  guaranteed  finite  results  during  the  various 
integrations. After  the  integrations,  this  factor is removed by letting Iy I = 0 
in  the  final  results.  This-divergence  results when the  variation of the  electro- 
magnetic  field  within  the  atoms is not treated  exactly;  in  fact,  in  the  dipole- 

dipole  approximation ( eiK' - I ) ,  it is entirely neglectedi8. Casimir  and 

Polder [ I  J remoxe  this  divergence by explicitly  introducing  the  factor e 
in  their K and K '  integrals. In this  calculation,  the  addition of this  factor 
would only make  things  more  cumbersome and s o  it is left  out  throughout 
the  discussion.  Power  and  Zienau [41 only mention  this  convergence  factor, 
as is done here ,  to  use  the  resulting  integrals.  [See  equations (IO) and (26) 
of Reference 4. I 

4 

" 

-lylK 
-c 

IS .  The  electromagnetic  vector  potential is then assumed  constant  over 
each  atom. 
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p Integrals 

m 

The  first  integral  to  be  considered is given by J p2 d p  F ( p )  
(P + b) (P - b) 0 

Using  the  definition fo r  F(p) in  terms of exponential  functions,  this  integral 
becomes 

Letting P - -0 in the second  integral,  one  notes  that  the  integrand  changes 
into  the  form of the first integral  and  the limits change from (+m) to (-m) . 
Interchanging  limits,  the  above two terms  may be added  to  give 
4- d p  (p2  + ip - 1)e  i P  . To  obtain  the  principal value’’ of this  integral,  one 
-00 

takes  the  following  complex  integral: 

dz (z2 + i z  - 1 ) e  
i z  

9 F ( z )  = 9 2 i z  (z + b) (z - b) ’ 

z= Le 

z=- b+E e z= p z= b+E e‘ 

19. The  explicit  notation P. V. wi l l  be  used  only when there is a question 

as to  the  value of the  integral  being  considered. 
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0 
Lim { F ( z   = P ) d z  + F ( z  = - b +  E e  )dz + F(z  = P ) d z  
€4 -L 7r -b€ 
I-+-.. 

io  
- E  

ir E 

Rearranging  terms  and  assuming  convergence at L - 00, one  obtains  the 
principal  value  (P.V. ) of the  desired  integral by transposing  terms.  Hence, 

+-.. - E  

P. V. J dz F ( Z  = p )  = Lim { - ; - E  F ( z ) d z +  J F(z)clz 
-co E-0 -L -b”E 

le.0 

b- E L 

E b + E  

+ F ( z ) d z +  J F ( z ) d z  

7i 

F ( z = - b + E e   ) d z + J F ( z = € e   ) d z  i o  if3 

0 

- 
+ J  F ( z = b + E e   ) d z  if3 

0 

Substituting  for  z  in  each of the  above  integrals  and  interchanging  limiting 
and  integral  operations,  the  above  becomes 

+ (b2 - i b  - l ) e  -q } . 
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Hence, 

The  next  integral  that  needs  to be considered is similar  to  the one 
just  evaluated, with  only F ( p )  replaced by G ( p )  . Following a similar 
procedure,  this  integral is given by 

where 

+ i b  ( - ib  - 1)e 
2 i  - ib  1 ' 

The  next  integral  expression is p d p  I? ( p )  
Rearranging  the  factors  and  fractions,  the  above  quantity  can  be  written as 

P2dP F ( P )  
J ( p  + b) ( p  - b) 

, This  integral is the same as the  one  considered 

previously;  hence,  the  result is obtained  directly,  using  equation  (C-1) . 
The  integral  under  consideration  may  also  be  evaluated by taking 

1 p d p  F ( p )  (;.ii- + *) and  separating F ( p )  as F ( p )  = I(p) 
P 3  ' 

where I(p) = (p2 sin p + p cos - sin p )  . Hence,  this  integral  can be written 
I 1 I as J d p  I ( p )  7 (G + 3) . Expanding  the  fraction,  this  integral 

becomes J d p  I(p) { - ls2p + 2 (-bsi; + &) } . The last step  may 
2 1 1 

be checked by simply  'collecting  terms  under a common  denominator  on both 
fractions.  Hence,  one  needs to evaluate  three  integrals  given by 
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separated  into two parts as follows: 

Letting p - -p in  the  second  term  and  interchanging  the  resulting  limits of 

integration,  the two parts  combine  into s 
the same  operations on s IOdp and  using  the fact that I ( p )  = -I(+) , 

one  can  combine  the  remaining two integrals  into - s . Thus, 

the  integral  under  consideration  becomes 

+co ( p 2  + i p  - l ) e  i P  
2 i p  d p  . Performing 

co -m 

0 (P - b) co 
1 I ( P ) d P  
b2 ( b  + P )  

-03 

Substituting  for i /p and I/ (b  + p )  their  respective  principal  value [20 ,21]  
defined as 
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where 

then  one  can  evaluate the integrals by using the rules [ZO] for  integrating 
over  the 5 ( p )  and S ( p )  functions.  Taking the first integral, one obtains 

where  the first  integral  doesn't  contribute  since no  poles are  enclosed by the 
contour20.  The  next  integral is evaluated as follows: 

20. Note that  in  this  case one must  use  the  requirement of convergence  at 

infinity  obtained by the implied  convergence factor e - Iy Iz 
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03 

-03 

i z  
= Lim $ (z2 + i z  - i ) e  

2 i  (0 + b +   i c )  d z  
E - 4  

-i z 03 (z2 - i z  - i ) e  
- L i m  2 i  ( p + b + i c )  d z  + i n  j" I ( p ) d p  6 [ p  - (-b)] . 
€4 -03 

Since no poles are included in  the contour  corresponding  to  the  first  integral 
above, its value is zero. In the  second  integral,  the  contour  must  be  taken 
over  the  negative  half  plane;  hence, a pole is included  within  the  contour. 
Thus,  the  value of this  integral is obtained  using  the  Residue  Theorem. 
Integrating  over  the  6-function,  the  above  expression  becomes 

03 

IodP (b  + P )  = n [ ( b 2 + i b - l ) e i b ] + i n I ( - b )  . 
-03 

The  integral  containing  the 6 function is given by 

.( (b2 - ii; 1)e (b2 + i b  - 1 ) e  -i b 
i n  I(-b) = i n  - 

2 i  i b )  . 
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Noting  that  the terms containing e i b  add,  one  finally  obtains 

03 

s e) " - 'IT [ (b2 + i b  - l ) e i b  + (b2 - i b  - l)e-ib] . 
2 

-03 

Collecting terms, the p integral  under  consideration is 

+ (b2 - i b  - 1)e 
-i 

= I-$ + i n b   F + ( b )  1 .  
Combining  the  fractions on the left hand side of the  above  equation,  one 

obtains 2 J _PdP F(P)  
( P  + b) (P - b) 

. Dividing by the  factor of 2 ,  complete  agree- 

ment with  equation (C-1) is obtained.  The  reason  for  including  this  alternate 
method of handling  this  type of integrals is to  provide a means of checking 
some of the  results  and  because  sometimes  this  method is easier to  apply. 

The  next  integral is given by 

Multiplying by ( p  - b) on the  numerator  and  denominator  and  interchanging 
b  and p on two of the  terms, one  obtains 
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The first of these  integrals  has  already  been  evaluated;  the-  other  integral is 
evaluated as follows: 

4 

Combining  terms, one  obtains 

= ( n  b d b   F ( b )  + 2 i n  s b4db  F(b)   F+(b)  ] . 

The integral  corresponding  to  the  above,  but  containing G ( p )  instead of 
F(P) ,  is obtained  directly from the above  results. 
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The  next  integrals of interest  are given by 

Multiplying by' (b - p )  in the numerator  and  denominator of the  above 
expression and recombining as before,  the  above  expression  becomes 

The p integrals  are of the same  form as the  ones  considered  previously 
with only F ( p )  and Fa ( p )  replacing F ( p )  and G ( p )  . Following  the steps 
leading  to  equation (C-I)  , one notes  that  since 3 ( p )  and F, ( p )  have 
different  coefficients  than F(p)  , only  the  residue at p = 0 changes  value. 
This  can  be  seen by considering  these  integrals as follows: 

t 

'IT ie 7.r 

+ J  F ( z = € e   ) d z + J   F ( z = b + E e  ie )dz ] 7 

0 0 

179 



(-ib3 - 2b2 + 3 i b  + 3)e-ib 
2 i  

c ( i b 3   - 2 b 2  - 3 i b +  3)e ] = 1- (3;) + %  ] . i b  

+Ti? 2 i   2 b  9 

Note that  the sign change  in the (3~r/2 b2) t e rm is due  to  the  corresponding 
sign  change  in  the  constant  factors of the p polynomials  in 3 ( p )  and F3 ( p )  
respectively. A similar  integral  occurs with exactly  the  same  form as the 
above term,  being  considered with only 

G ( p )  - 2 F3 (8) , which when 

L 2 i  

that  the  residue at the  origin 

3 ( 6 )  replaced by 32 ( p )  . Since 
expanded  gives 

(ip3 + 3p2 - 6 i p  - 6) e-ip ] 
2 i  I 

contains  the  constant  factor  in  the 
polynomial  factor  in p ,  the  result  for  this  integral is 

The  next  group of p integrals are contained  in  the  term 

J b d b  (b2 + p 2 ) '  (F (b )  F ( p )  + 2 G(b) G ( p )  } . 
(b + P )  
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Expanding  these  factors  and  rearranging  terms as before,  the  preceding 
expression  becomes 

Analysis of the  above  terms  shows  that  only  the last term  needs  to be 
evaluated.  Using  the  same  procedure as before, 

00 

= s  
“00 

= 1 9 b5 F+(b) ] 

The  next  integral  appears  in the term  given by 

The first integral  above  has  been  evaluated  previously.  The  second 
integral is obtained as follows: 
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'IT 

= Lim [[ F ( z  = - b +  Ee )dz + F ( z  = b + ceie)dz] = 9 b 3 3 - ( b )  io 
€4 0 

Similar  operations a r e  used to obtain 

The  next  integral  group is found in the term 
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Using  the  fact  that 

L .J 

(p4 + 4 ip3  - 126' + 24 ip  + 24)e i P  
2 i  

L 

- (~p?-"4ip3 - 12 p2 + 24 ip  + 24)e 
2 i  - 7  , 

one can write the  results  for  the  above  integrals in the order in  which  they 
appear: 

+ 2 J b d b   [ 2 4 F 3 ( b ) {  9 + % b F : ( b ) ] ]  . 

Integration and  Transformation of b- Integrals 
The  b-integrals  resulting  from  the p integrations are considered  in 

this  section.  In  general, two types of integrals are considered. In some 
cases the  integral's  principal  value is obtained;  whereas  in  other  cases,  the 
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integral is simply  transformed  into  another integral expression. This 
behavior  results  from  the  fact  that  the  evaluation of the b-integrals  in  closed 
form is not possible  [22].  The  most one can do is express  quantities  in 
terms of sine  and  cosine  integrals  defined by 

X X 
s i n b  db cos  b 

S i W  = J 7 Y C.(X) = J b db . 
0 1 

00 

The  principal  value of the first  integral  to  be  considered is obtained 
as follows:  Taking 

y $ [ ( b 2 + 3 i i ; 3 ) e   i b  - (b2 - 3 i b  - 3)e-ib ] Y 

0 2 i  

and letting  b - -b in the  second  term,  the  above  expression  becomes 

Using  the  contour  indicated,  this  integral  becomes 

00 
db (b2 + 3 i b  - 3 ) e i b  J Z 7  2 i  

--03 

F ( z  = €e  )dz ] . 

184 



I 

Using  the L' Hospital rule in carrying  out  the  limiting  operations,  the 
principal value of this integral is 

00 
db (b2 + 3 i b  - 3)e  i b  

-00 $3 2 i  = (-5) . 

A similar  procedure is used  to evaluate the  next  integral, given by 

00 

db [Lb4 + 2 ib3  - 5b2 - 6 i b +   3 ) e  2 i b  

r\ J T z 7  2 i  
U L 

(b4 - 2ib3  - 5b2 + 6 i b  + 3 ) e  -2 i b  
- 

2 i  

00 
db (b4 + 2 ib3  - 5b2 - 6 i b +   3 ) e  

2 i b  

2 i  

The  next  integral is given by 

co 
db  (b4 + 2ib3  - 5b2 - 6 i b +   3 ) e  2 i b  

0 
s 2ab ( a +   b ) z   2 i  

(b4 - 2 ib3  - 5b2 + 6 i b +   3 ) e  -2 i b  
- - 

2 i  

185 



Since  the two parts of the  above  expression  cannot  be  combined  in  the  manner 
used  before,  one  evaluates  each of the  above t e rms  by considering  the 
complex  integral 

(z4 + 2 iz  - 5z2 - 6 iz  -k 3 ) e  
2 i  

iz 

integrated  around  the  indicated  contour  [231.  Since  no  poles are enclosed, 
this  integral is given by 

i e  0 

i L  2 
+ s F ( z = i y ) d z +  s F ( z = E e  

Making  use of the  convergence at infinity  requirement  the  following is 
obtained: 

The  left-hand  side of the  above  equation is just  the  principal  value of the 
integral  under  consideration;  hence, 
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00 
db (b4 + 2 ib3  - 5b2 - 6 i b +   3 ) e  + 2 i b  

0 2ab(a  + b)' 2 i  

i L = i y  
= (5) + Lim J i d y  (9 + 2y3 + 5y2 + 6y-t- 3)e -2 Y - 

€4 i c = i y  a ( i y )  (a + i Y P  2 i  

The  term  containing  the e is evaluated  in  the  same  manner, but  the 

corresponding  complex  integral $ F (z)  dz is evaluated,  using  the  indicated 
contour: 

- 2 i b  

00 
db  (b4 - 2 ib3  - 5b2 + 6 i b  + 3)e 

-2 i b  

- 0 J 2 a b ( a  + b)' ("" 2 i  

a3 

dY (9 + 2y3 + 5y2 + 6 y +   3 ) e  -2 Y 
- J 4( iy )  (a - iy) '  

0 

Combining  the  above results,  the  integral  being  considered  equals 

- iy) - ( a  + iy) '} 
2 x {y4 + 2y3 + 5y2 + 6y + 3) e -2Y . 

0 W i Y )  (a2 + Y2) 
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Rearranging factors, one  finally  obtains 

00 
(b4 + 2 i b 3  - 5b2 - 6 i b  + 3 ) e  

2ib 

0 
2 i  

(b4 - 2 i b 3  - 5 b 2 +   6 i b +   3 ) e  
-2 i b  

- 
2 i  

= (2) - / 00 d y   { # + 2 y 3 + 5 y 2 + 6 y + 3 , ) e  -2  Y 
(a2 + y2j2 
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